DOI QR코드

DOI QR Code

Photoacoustic Nonlinearity to Absorption Coefficients in Photoacoustic Imaging with Focused Ultrasound Transducers

초점 초음파 측정기로 측정한 광음향 신호의 광 흡수계수에 대한 비선형성

  • Kang, Dongyel (School of Basic Sciences, College of Engineering, Hanbat National University)
  • 강동열 (한밭대학교 공과대학 기초과학부)
  • Received : 2017.03.31
  • Accepted : 2017.06.15
  • Published : 2017.08.25

Abstract

The physical shape of an ultrasound transducer has not been considered in previous studies of the photoacoustic saturation effect, where a photoacoustic signal's magnitude linearly increases as an absorption coefficient increases and it is finally saturated. In this paper, the effect of a spherically focused ultrasound transducer on photoacoustic nonlinearity is investigated. The focused ultrasound transducer's spatial filtering effect on photoacoustic signals is analytically derived considering the combined concept of a virtual point detector and Green function approach. The ultrasound transducer's temporal response (i.e., transfer function) effect on photoacoustic signals is considered by integrating photoacoustic signal values within the absorption area covered by a spatial resolution of the ultrasound transducer. Results from the analytically derived expression show that the magnitude of photoacoustic signals measured by a spherical focused ultrasound transducer shows a maximum at a specific absorption coefficient, and decreases after that maximum point as an absorption coefficient is increased. The origin of this photoacoustic nonlinearity is physically understood by comparing the ultrasound transducer's transfer functions and photoacoustic resonance spectra. In addition, this physical interpretation implies that the photoacoustic nonlinearity is strongly dependent on the irradiance distribution inside an absorption medium.

광 흡수체로부터 측정되는 광음향 신호의 크기가 광 흡수계수 값의 증가에 따라 증가하다가 포화되는 광음향 비선형성에 대한 기존의 분석에서는 초음파 측정기의 물리적 형태를 고려하지 않았다. 이 논문에서는 초음파 측정기의 구면 초점 형태가 광음향 비선형성에 미치는 영향을 분석하였다. 구면 초점 초음파 측정기의 공간 필터링에 의한 광음향 공명 현상을 고려하고 기존의 광음향 비선형성에 대한 연구 방법을 보완하여 구면 초점 초음파 측정기로 측정한 광음향 신호에 대한 해석식을 이론적으로 유도하였다. 이 해석식에 의한 결과는 광음향 신호가 특정한 광 흡수계수 값에서 최대값을 나타내고 최대값 이후로는 광 흡수계수 값의 증가에 따라 오히려 감소함을 보였다. 주파수 영역에서 구면 초점 초음파 측정기에 의해 측정된 광음향 신호의 공명 스펙트럼과 초음파 측정기의 주파수 전달 함수를 비교하여 이 기존의 통념과는 다른 특징을 보이는 광음향 비선형성을 이해하였다. 또한, 이 주파수 영역에서의 물리적 해석으로 인해 광음향을 발생시키는 광 흡수체 내부의 광 조도 형태도 광음향 비선형성에 영향을 미친다는 것을 알 수 있었다.

Keywords

References

  1. G. J. Diebold, T. Sun, and M. I. Khan, "Photoacoustic monopole radiation in one, two, and three dimensions," Phys. Rev. Lett. 67, 3384-3387 (1991). https://doi.org/10.1103/PhysRevLett.67.3384
  2. H. F. Zhang, K. Maslov, G. Stoica, and L. V. Wang, "Functional photoacoustic microscopy for high-resolution and noninvasive in vivo imaging," Nat. Biotechnol. 24, 848-851 (2006). https://doi.org/10.1038/nbt1220
  3. K. Maslov, H. F. Zhang, and L. V. Wang, "Effects of wavelength-dependent fluence attenuation on the noninvasive photoacoustic imaging of hemoglobin oxygen saturation in subcutaneous vasculature in vivo," Inverse Probl. 23, S113-S122 (2007). https://doi.org/10.1088/0266-5611/23/6/S09
  4. B. Ning, M. J. Kennedy, A. J. Dixon, N. Sun, R. Cao, B. T. Soetikno, R. Chen, Q. Zhou, K. K. Shung, J. A. Hossack, and S. Hu, "Simultaneous photoacoustic microscopy of microvascular anatomy, oxygen saturation, and blood flow," Opt. Lett. 40, 910-913 (2015). https://doi.org/10.1364/OL.40.000910
  5. D. Kang, Q. Huang, and Y. Li, "Measurement of cardiac output by use of noninvasively measured transient hemodilution curves with photoacoustic technology," Biomed. Opt. Express 5, 1445-1452 (2014). https://doi.org/10.1364/BOE.5.001445
  6. M. Sivaramakrishnan, K. Maslov, H. F. Zhang, G. Stoica, and L. V. Wang, "Limitations of quantitative photoacoustic measurement of blood oxygenation in small vessels," Phys. Med. Biol. 52, 1349-1361 (2007). https://doi.org/10.1088/0031-9155/52/5/010
  7. J. Wang, T. Liu, S. Jiao, R. Chen, Q. Zhou, K. K. Shung, L. V. Wang, and H. F. Zhang, "Saturation effect in functional photoacoustic imaging," J. Biomed. Opt. 15, 021317 (2010). https://doi.org/10.1117/1.3333549
  8. D. Kang, B. Lashkari, and A. Mandelis, "Photoacoustic resonance by spatial filtering of focused ultrasound transducers," Opt. Lett. 42, 655-658 (2017). https://doi.org/10.1364/OL.42.000655
  9. D. Kang, "Effect of spatial filtering of ultrasound transducers on photoacoustic measurements," Proc. SPIE 10064, 100645D (2017).
  10. J. Yao and L. V. Wang, "Photoacoustic microscopy," Laser Photonics Rev. 7, 758-778 (2013). https://doi.org/10.1002/lpor.201200060
  11. B. Lashkari and A. Mandelis, "Linear frequency modulation photoacoustic radar: optimal bandwidth and signal-to-noise ratio for frequency-domain imaging of turbid media," J. Acoust. Soc. Am. 130, 1313-1324 (2011). https://doi.org/10.1121/1.3605290
  12. Z. Guo, S. Hu, and L. V. Wang, "Calibration-free absolute quantification of optical absorption coefficients using acoustic spectra in 3D photoacoustic microscopy of biological tissue," Opt. Lett. 35, 2067-2069 (2010). https://doi.org/10.1364/OL.35.002067
  13. B. Cox, J. G. Laufer, S. R. Arridge, and P. C. Beard, "Quantitative spectroscopic photoacoustic imaging: a review," J. Biomed. Opt. 17, 061202 (2012). https://doi.org/10.1117/1.JBO.17.6.061202
  14. Z. Li, H. Li, Z. Zeng, W. Xie, and W. R. Chen, "Determination of optical absorption coefficient with focusing photoacoustic imaging," J. Biomed. Opt. 17, 061216 (2012). https://doi.org/10.1117/1.JBO.17.6.061216