DOI QR코드

DOI QR Code

Effects of Organic Thin Films on Local Resonance of Metamaterials under Photoexcitation

  • Song, Myeong-Seong (Department of Physics and Optoelectronics Convergence Research Center, Chonnam National University) ;
  • Hwang, In-Wook (Advanced Photonics Research Institute, GIST) ;
  • Lee, Chang-Lyoul (Advanced Photonics Research Institute, GIST) ;
  • Kang, Chul (Advanced Photonics Research Institute, GIST) ;
  • Kee, Chul-Sik (Advanced Photonics Research Institute, GIST) ;
  • Park, Sae June (Department of Physics and Department of Energy Systems Research, Ajou University) ;
  • Ahn, Yeong Hwan (Department of Physics and Department of Energy Systems Research, Ajou University) ;
  • Park, Doo Jae (Department of Physics, Hallym University) ;
  • Lee, Joong Wook (Department of Physics and Optoelectronics Convergence Research Center, Chonnam National University)
  • Received : 2017.03.02
  • Accepted : 2017.06.02
  • Published : 2017.08.25

Abstract

We demonstrate that the local resonance of metamaterials can be tuned by the effects of organic thin films under photoexcitation. Tris (8-hydroxyquinolinato) aluminum ($Alq_3$) layers are deposited on metamaterial/silicon hybrid structures. By varying the thickness of the $Alq_3$ layer on the subwavelength scale, the resonant peak of the metamaterial becomes very adjustable, due to the effect of a thin dielectric substrate. In addition, under photoexcitation all the spectral peaks of the resonance shift to higher frequencies. This originates from the reduction of the capacitive response generated inside the gaps of split-ring resonators. The adjustability of the electromagnetic spectrum may be useful for developing optical systems requiring refractive-index engineering and active optical devices.

Keywords

References

  1. Y. S. Lee, "Principles of terahertz science and technology," Springer, New York (2009).
  2. M. Tonouchi, "Cutting-edge terahertz technology," Nat. Photonics 1, 97-105 (2007). https://doi.org/10.1038/nphoton.2007.3
  3. D. M. Mittleman, M. Gupta, R. Neelamani, R. G. Baraniuk, J. V. Rudd, and M. Koch, "Recent advances in terahertz imaging," Appl. Phys. B 68, 1085-1094 (1999). https://doi.org/10.1007/s003400050750
  4. P. H. Siegel, "Terahertz technology," IEEE Trans. Microw. Theory. Tech. 50, 910-928 (2002). https://doi.org/10.1109/22.989974
  5. B. Ferguson and X.-C. Zhang, "Materials for terahertz science and technology," Nat. Mater. 1, 26-33 (2002). https://doi.org/10.1038/nmat708
  6. H. Cao and A. Nahata, "Coupling of terahertz pulses onto a single metal wire waveguide using milled grooves," Opt. Express 13, 7028-7034 (2005). https://doi.org/10.1364/OPEX.13.007028
  7. J. W. Lee, M. A. Seo, D. J. Park, D. S. Kim, S. C. Jeoung, C. Lienau, Q. H. Park, and P. C. M. Planken, "Shape resonance omni-directional terahertz filters with near-unity transmittance," Opt. Express 14, 1253 (2006). https://doi.org/10.1364/OE.14.001253
  8. W. J. Padilla, A. J. Taylor, C. Highstrete, M. Lee, and R. D. Averitt, "Dynamical electric and magnetic metamaterial response at terahertz frequencies," Phys. Rev. Lett. 96, 107401 (2006). https://doi.org/10.1103/PhysRevLett.96.107401
  9. J. N. Heyman, R. Kersting, and K. Unterrainer, "Time-domain measurement of intersubband oscillations in a quantum well," Appl. Phys. Lett. 72, 644-646 (1998). https://doi.org/10.1063/1.120832
  10. I. H. Libon, S. Baumgartner, M. Hempel, N. E. Hecker, J. Feldmann, M. Koch, and P. Dawson, "An optically controllable terahertz filter," Appl. Phys. Lett. 76, 2821-2823 (2000). https://doi.org/10.1063/1.126484
  11. T. Kleine-Ostmann, P. Dawson, K. Pierz, G. Hein, and M. Koch, "Room-temperature operation of an electrically driven terahertz modulator," Appl. Phys. Lett. 84, 3555-3557 (2004). https://doi.org/10.1063/1.1723689
  12. H.-T.Chen, W. J. Padilla, J. M. O. Zide, A. C. Gossard, A. J. Taylor, and R. D. Averitt, "Active terahertz metamaterial devices," Nature 444, 597-600 (2006). https://doi.org/10.1038/nature05343
  13. E. Hendry, M. J. Lockyear, J. Gomez Rivas, L. Kuipers, and M. Bonn, "Ultrafast optical switching of the THz transmission through metallic subwavelength hole arrays," Phys. Rev. B 75, 235305 (2007). https://doi.org/10.1103/PhysRevB.75.235305
  14. E. Hendry, F. J. Garcia-Vidal, L. Martin-Moreno, J. Gomez Rivas, M. Bonn, A. P. Hibbins, and M. J. Lockyear, "Optical control over surface-plasmon-polariton-assisted THz transmission through a slit aperture," Phys. Rev. Lett. 100, 123901 (2008). https://doi.org/10.1103/PhysRevLett.100.123901
  15. H.-T. Chen, W. J. Padilla, M. J. Cich, A. K. Azad, R. D. Averitt, and A. J. Taylor "A metamaterial solid-state terahertz phase modulator," Nat. Photonics 3, 148-151 (2009). https://doi.org/10.1038/nphoton.2009.3
  16. H. K. Yoo, C. Kang, Y. W. Yoon, H. J. Lee, J. W. Lee, K. Lee, and C. S. Kee, "Organic conjugated material-based broadband terahertz wave modulators," Appl. Phys. Lett. 99, 061108 (2011). https://doi.org/10.1063/1.3626591
  17. H. K. Yoo, Y. W. Yoon, K. Lee, C. Kang, C. S. Kee, I. W. Hwang, and J. W. Lee, "Highly efficient terahertz wave modulators by photo-excitation of organics/silicon bilayers," Appl. Phys. Lett. 105, 011115 (2014). https://doi.org/10.1063/1.4887376
  18. D. G. Cooke and P. U. Jepsen, "Optical modulation of terahertz pulses in a parallel plate waveguide," Opt. Express 16, 15123-15129 (2008). https://doi.org/10.1364/OE.16.015123
  19. M. Liu, H. Y. Hwang, H. Tao, A. C. Strikwerda, K. Fan, G. R. Keiser, A. J. Sternbach, K. G. West, S. Kittiwatanakul, J. Lu, S. A. Wolf, F. G. Omenetto, X. Zhang, K. A. Nelson, and R. D. Averitt, "Terahertz-field-induced insulator-to-metal transition in vanadium dioxide metamaterial," Nature 487, 345-348 (2012). https://doi.org/10.1038/nature11231
  20. H. Tao, A. C. Strikwerda, M. Liu, J. P. Mondia, E. Ekmekci, K. Fan, D. L. Kaplan, W. J. Padilla, Z. Zhang, R. D. Averitt, and F. G. Omenetto, "Performance enhancement of terahertz metamaterials on ultrathin substrates for sensing applications," Appl. Phys. Lett. 97, 261909 (2010). https://doi.org/10.1063/1.3533367
  21. Z. C. Chen, M. H. Hong, C. S. Lim, N. R. Han, L. P. Shi, and T. C. Chong, "Parallel laser microfabrication of largearea asymmetric split ring resonator metamaterials and its structural tuning for terahertz resonance," Appl. Phys. Lett. 96, 181101 (2010). https://doi.org/10.1063/1.3424793
  22. D. J. Park, M. S. Jeong, and S. B. Choi, "Effect of a dielectric substrate with a subwavelength thickness of light diffraction by rectangular hole arrays on metallic film," J. Kor. Phys. Soc. 65, 1390-1398 (2014). https://doi.org/10.3938/jkps.65.1390
  23. S. J. Park, S. A. N. Yoon, and Y. H. Ahn, "Dielectric constant measurements of thin films and liquids using terahertz metamaterials," RSC. Adv. 6, 69381-69386 (2016). https://doi.org/10.1039/C6RA11777E
  24. A. Lukyanov and D. Andrienko, "Extracting nondispersive charge carrier mobilities of organic semiconductors from simulation of small systems," Phys. Rev. B 82, 193202 (2010). https://doi.org/10.1103/PhysRevB.82.193202
  25. M. M. El-Nahass, A. M. Farid, and A. A. Atta, "Structural and optical properties of Tris (8-hydroxyquinoline) aluminum (III) ($Alq_3$) thermal evaporated thin films," J. All. Com. 507, 112-119 (2010). https://doi.org/10.1016/j.jallcom.2010.07.110
  26. M. van Exter and D. Grischkowsky, "Optical and electric properties of doped silicon from 0.1 to 2 THz," Appl. Phys. Lett. 56, 1694-1696 (1990). https://doi.org/10.1063/1.103120
  27. Z. Jiang, M. Li, and X. C. Zhang, "Dielectric constant measurement of thin films by differential time domain spectroscopy," Appl. Phys. Lett. 76, 3221-3223 (2000). https://doi.org/10.1063/1.126587
  28. J. W. Lee, J. K. Yang, I. B. Sohn, H. K. Choi, C. Kang, and C. S. Kee, "Relationship between the order of rotation symmetry in perforated apertures and terahertz transmission characteristics," Opt. Eng. 51(11), 119002 (2012). https://doi.org/10.1117/1.OE.51.11.119002
  29. C. G. Hu, M. B. Pu, X. Li, M. Wang, Q. Feng, and X. G. Luo, "Extraordinary optical transmission induced by electric resonance ring and its dynamic manipulation at far-infrared regime," Opt. Express 19, 18109-18115 (2011). https://doi.org/10.1364/OE.19.018109
  30. R. Singh, A. K. Azad, Q. X. Jia, A. J. Taylor, and H. T. Chen, "Thermal tunability in terahertz metamaterials fabricated on strontium titanate single-crystal substrates," Opt. Lett. 36, 1230-1232 (2011). https://doi.org/10.1364/OL.36.001230
  31. Y. Yang, R. Huang, L. Cong, Z. Zhu, J. Gu, Z. Tian, R. Singh, S. Zhang, J. Han, and W. Zhang, "Modulating the fundamental inductive-capacitive resonance in asymmetric double-split ring terahertz metamaterials," Appl. Phys. Lett. 98, 121114 (2011). https://doi.org/10.1063/1.3571288