DOI QR코드

DOI QR Code

Dynamic bending response of SWCNT reinforced composite plates subjected to hygro-thermo-mechanical loading

  • Chavan, Shivaji G. (Department of Mechanical Engineering, S.V.N.I.T) ;
  • Lal, Achchhe (Department of Mechanical Engineering, S.V.N.I.T)
  • 투고 : 2017.02.22
  • 심사 : 2017.04.07
  • 발행 : 2017.08.25

초록

The dynamic bending response of single walled carbon nanotube reinforced composite (SWCNTRC) plates subjected to hygro-thermo-mechanical loading are investigated in this paper. The mechanical load is considered as wind pressure for dynamic bending responses of SWCNTRC plate. The dynamic version of the High Order shear deformation Theory (HSDT) for a composite plate with Matrix and SWCNTRC plate is first formulated. Distribution of fibers through the thickness of the SWCNTRC plate could be uniform or functionally graded (FG). The dynamic displacement response is predicted by using Nemarck integration method. The effective material properties of SWCNTRC are estimated by using micromechanics based modeling approach. The effect of different environmental condition, volume fraction of SWCNT, Width-to-thickness ratio, wind pressure, different SWCNTRC-FG plates, boundary condition, E1/E2 ratio, different temperature on dynamic displacement response is investigated. The dynamic displacement response is compared with the available literature and it shows good agreement.

키워드

참고문헌

  1. Ahouel, M., Houari, M.S.A., Adda Bedia, E.A. and Tounsi, A. (2016), "Size-dependent mechanical behavior of functionally graded trigonometric shear deformable nanobeams including neutral surface position concept", Steel Compos. Struct., 20(5) 963-981.. https://doi.org/10.12989/scs.2016.20.5.963
  2. Ait Amar Meziane et al (2014), "An efficient and simple refined theory for buckling and free vibration of exponentially graded sandwich plates under various boundary conditions", J. Sandw. Struct. Mater., 16(3), 293-318. https://doi.org/10.1177/1099636214526852
  3. Ait Yahia, S., Ait Atmane, H., Houari, M.S.A. and Tounsi, A. (2015), "Wave propagation in functionally graded plates with porosities using various higher-order shear deformation plate theories", Struct. Eng. Mech., 53(6), 1143-1165. https://doi.org/10.12989/sem.2015.53.6.1143
  4. Al-Basyouni, K.S., Tounsi, A. and Mahmoud, S.R. (2015), "Size dependent bending and vibration analysis of functionally graded micro beams based on modified couple stress theory and neutral surface position", Compos. Struct., 125, 621-630. https://doi.org/10.1016/j.compstruct.2014.12.070
  5. Amen, A. and Jean Pierre, M. (2006), "A layered approach to the non-linear static and dynamic analysis of rectangular reinforced concrete slabs", J. Mech. Sci., 48(3), 294-306. https://doi.org/10.1016/j.ijmecsci.2005.09.013
  6. Asadi, H., Bodaghi, M., Shakeri, M. and Aghdam, M.M. (2014), "Nonlinear dynamics of SMA-fiber-reinforced composite beams subjected to a primary/secondary-resonance excitation", Acta Mech., 226(2), 437-455. https://doi.org/10.1007/s00707-014-1191-4
  7. Belabed, Z., Houari, M.S.A., Tounsi, A., Mahmoud, S.R. and Anwar Beg, O. (2014), "An efficient and simple higher order shear and normal deformation theory for functionally graded material (FGM) plates", Compos.: Part B, 60, 274-283. https://doi.org/10.1016/j.compositesb.2013.12.057
  8. Beldjelili, Y., Tounsi, A. and Mahmoud, S.R. (2016), "Hygrothermo-mechanical bending of S-FGM plates resting on variable elastic foundations using a four-variable trigonometric plate theory", Smart Struct. Syst., 18(4), 755-786. https://doi.org/10.12989/sss.2016.18.4.755
  9. Belkorissat, I., Houari, M.S.A., Tounsi, A., Adda Bedia, E.A. and Mahmoud, S.R. (2015), "On vibration properties of functionally graded nano-plate using a new nonlocal refined four variable model", Steel Compos. Struct., 18(4), 1063-1081. https://doi.org/10.12989/scs.2015.18.4.1063
  10. Bellifa, H., Benrahou, K.H., Hadji, L., Houari, M.S.A. and Tounsi, A. (2016), "Bending and free vibration analysis of functionally graded plates using a simple shear deformation theory and the concept the neutral surface position", J. Braz. Soc. Mech. Sci. Eng., 38(1), 265-275. https://doi.org/10.1007/s40430-015-0354-0
  11. Benahmed, A., Houari, M.S.A., Benyoucef, S., Belakhdar, K. and Tounsi, A. (2017), "A novel quasi-3D hyperbolic shear deformation theory for functionally graded thick rectangular plates on elastic foundation", Geomech. Eng., 12(1), 9-34. https://doi.org/10.12989/gae.2017.12.1.009
  12. Benguediab, S., Tounsi, A., Zidour, M. and Semmah, A. (2014), "Chirality and scale rffects on mechanical buckling properties of zigzag double-walled carbon nanotubes", Compos. Part B, 57, 21-24. https://doi.org/10.1016/j.compositesb.2013.08.020
  13. Bennoun, M., Houari, M.S.A. and Tounsi, A. (2016), "A novel five variable refined plate theory for vibration analysis of functionally graded sandwich plates", Mech. Adv. Mater. Struct., 23(4), 423-431. https://doi.org/10.1080/15376494.2014.984088
  14. Bodaghi, M., Damanpack, A.R., Aghdam, M.M. and Shakeri, M. (2013), "Active shape/stress control of shape memory alloy laminated beams", Compos.: Part B, 56, 889-899.
  15. Bouafia, K., Kaci, A., Houri, M.S.A., Benzair, A. and Tounsi, A. (2017), "A nonlocal quasi-3D theory for bending and free flexural vibration behaviors of functionally graded nanobeams", Smart Struct. Syst., 19(2), 115-126. https://doi.org/10.12989/sss.2017.19.2.115
  16. Bouderba, B., Houari, M.S.A., Tounsi, A. and Mahmoud, S.R. (2016), "Thermal stability of functionally graded sandwich plates using a simple shear deformation theory", Struct. Eng. Mech., 58(3), 397-422. https://doi.org/10.12989/sem.2016.58.3.397
  17. Bounouara, F., Benrahou, K.H., Belkorissat, I. and Tounsi, A. (2016), "A nonlocal zeroth-order shear deformation theory for free vibration of functionally graded nanoscale plates resting on elastic foundation", Steel Compos. Struct., 20(2), 227-249. https://doi.org/10.12989/scs.2016.20.2.227
  18. Bourada, F., Amara, K. and Tounsi, A. (2016), "Buckling analysis of isotropic and orthotropic plates using a novel four variable refined plate theory", Steel Compos. Struct., 21(6), 1287-1306. https://doi.org/10.12989/scs.2016.21.6.1287
  19. Bourada, M., Kaci, A., Houari, M.S.A. and Tounsi, A. (2015), "A new simple shear and normal deformations theory for functionally graded beams", Steel Compos. Struct., 18(2), 409-423. https://doi.org/10.12989/scs.2015.18.2.409
  20. Bousahla, A.A., Houari, M.S.A., Tounsi, A. and Adda Bedia, E.A. (2014), "A novel higher order shear and normal deformation theory based on neutral surface position for bending analysis of advanced composite plates", J. Comput. Meth., 11(6), 1350082. https://doi.org/10.1142/S0219876213500825
  21. Chavan, S.G. and Lal, A. (2017), "Bending analysis of laminated SWCNT Reinforced functionally graded plate Using FEM", Curv. Lay. Struct., 4(1), 133-144.
  22. Chen, W.Q. and Lee, K.Y. (2005), "State-space approach for statics and dynamics of angle-ply laminated cylindrical panels in cylindrical bending", J. Mech. Sci., 47, 374-387. https://doi.org/10.1016/j.ijmecsci.2005.01.009
  23. Chikh, A., Tounsi, A., Hebali, H. and Mahmoud, S.R. (2017), "Thermal buckling analysis of cross-ply laminated plates using a simplified HSDT", Smart Struct. Syst., 19(3), 289-297. https://doi.org/10.12989/sss.2017.19.3.289
  24. Shao, D., Hu, F., Wang, Q., Fuzhen, P. and Hu, S. (2016), "Transient response analysis of cross-ply composite laminated rectangular plates with general boundary restraints by the method of reverberation ray matrix", Compos. Struct., 152, 168-182. https://doi.org/10.1016/j.compstruct.2016.05.035
  25. Ebrahimi, F. and Habibi, S. (2017), "Nonlinear eccentric lowvelocity impact response of polymer-CNT-fiber multiscale nanocomposite plate resting on elastic foundations in hygrothermal environments", Mech. Adv. Mater. Struct., 1-14.
  26. Gadade, A.M., Lal, A. and Shing, B.N. (2016), "Acurate stochastic initial and finial faluare of laminated plates subjected to hygrothermo-mechanival loadings using puck's failure criteria", J. Mech. Sci., 114,177-206. https://doi.org/10.1016/j.ijmecsci.2016.05.015
  27. Girhammar, U.A., Pan Dan, H. and Gustafsson, A. (2009), "Exact dynamic analysis of composite beams with partial interaction", J. Mech. Sci., 51, 565-582. https://doi.org/10.1016/j.ijmecsci.2009.06.004
  28. Habib, H., Tounsi, A., Houari, M.S.A., Bessaim, A. and Bedia, E.A.A. (2014), "A new quasi-3D hyperbolic shear deformation theory for the static and free vibration analysis of functionally graded plates", ASCE J. Eng. Mech., 140, 374-383. https://doi.org/10.1061/(ASCE)EM.1943-7889.0000665
  29. Hamidi, A., Houari, M.S.A., Mahmoud, S.R. and Tounsi, A. (2015), "A sinusoidal plate theory with 5-unknowns and stretching effect for thermo-mechanical bending of functionally graded sandwich plates", Steel Compos. Struct., 18(1), 235-253. https://doi.org/10.12989/scs.2015.18.1.235
  30. Houari, M.S.A., Tounsi, A., Bessaim, A. and Mahmoud, S.R. (2016), "A new simple three-unknown sinusoidal shear deformation theory for functionally graded plates", Steel Compos. Struct., 22(2), 257-276. https://doi.org/10.12989/scs.2016.22.2.257
  31. Kamarian, S., Shakeri, M., Yas, M.H., Bodaghi, M. and Pourasghar, A. (2017), "Free vibration analysis of functionally graded nanocomposite sandwich beams resting on pasternak foundation by considering the agglomeration effect of CNTs", J. Sandw. Struct. Mater., 1-34.
  32. Kamarian, S., Bodaghi, M., Pourasghar, A. and Talebi, S. (2016), "Vibrational behavior of non-uniform piezoelectric sandwich beams made of CNT-reinforced polymer nanocomposite by considering the agglomeration effect of CNTs", Polym. Compos., 1-10.
  33. Khatibinia, M., Feizbakhsh, A., Mohseni, E. and Ranjbar, M.M. (2016), "Modeling mechanical strength of self-compacting mortar containing nanoparticles using wavelet-based support vector machine", Comput. Concrete, 18(6), 1065-1082. https://doi.org/10.12989/CAC.2016.18.6.1065
  34. Larbi, C.F., Kaci, A., Houari, M.S.A., Tounsi, A., Anwar, B.O. and Mahmoud, S.R. (2015), "Bending and buckling analyses of functionally graded material (FGM) size-dependent nanoscale beams including the thickness stretching effect", Steel Compos. Struct., 18(2), 425-442. https://doi.org/10.12989/scs.2015.18.2.425
  35. Lei, Z.X., Zhang, L.W. and Liew, K.M. (2015), "Elastodynamic analysis of carbon nanotube-reinforced functionally graded plates", J. Mech. Sci., 99, 208-217. https://doi.org/10.1016/j.ijmecsci.2015.05.014
  36. Liew, K.M., He, X.Q., Tan, M.J. and Lim, H.K. (2004), "Dynamic analysis of laminated composite plates with piezoelectric sensor/actuator patches using the FSDT mesh-free method", J. Mech. Sci., 46, 411-431. https://doi.org/10.1016/j.ijmecsci.2004.03.011
  37. Liew, K.M., Lee, Y.Y., Ng, T.Y. and Zhao, X. (2007), "Dynamic stability analysis of composite laminated cylindrical panels via the mesh-free kp-Ritz method", J. Mech. Sci., 49, 1156-1165. https://doi.org/10.1016/j.ijmecsci.2007.02.005
  38. Mahi, A., Adda Bedia, E.A. and Tounsi, A. (2015), "A new hyperbolic shear deformation theory for bending and free vibration analysis of isotropic, functionally graded, sandwich and laminated composite plates", Appl. Math. Model., 39, 2489-2508. https://doi.org/10.1016/j.apm.2014.10.045
  39. Nan, Li, Mabrouk, B.T., Zoheir, A. and Kamel, K. (2016), "A dynamic analysis approach for identifying the elastic properties of unstitched and stitched composite plates", Compos. Struct., 152, 959-968. https://doi.org/10.1016/j.compstruct.2016.06.038
  40. Patel, S.N., Datta, P.K. and Sheikh, A.H. (2007), "Dynamic instability analysis of stiffened shell panels subjected to partial edge loading along the edges", J. Mech. Sci., 49, 1309-1324. https://doi.org/10.1016/j.ijmecsci.2007.04.006
  41. Kumar, R., Ramachandra, L.S. and Banerjee, B. (2015), "Dynamic instability of damped composite skew plates under non-uniform in-plane periodic loading", J. Mech. Sci., 103, 74-88. https://doi.org/10.1016/j.ijmecsci.2015.09.002
  42. Ravi, K.L., Datta, P.K. and Prabhakara, D.L. (2003), "Dynamic instability characteristics of laminated composite plates subjected to partial follower edge load with damping", J. Mech. Sci., 45, 1429-1448. https://doi.org/10.1016/j.ijmecsci.2003.10.008
  43. Reddy, J.N. (2003), Mechanics of Laminated Composite Plates and Shells: Theory and Analysis, CRC Press.
  44. Reddy, J.N. (1982), "On the solution to force motions of rectangular composite plates", J. Appl. Mech., 49, 403-408. https://doi.org/10.1115/1.3162101
  45. Salami, S.J. (2016), Dynamic Extended high Order Sandwich Panel Theory for Transient Response of Sandwich Beams with Carbon Nanotube Reinforced Face Sheets, Aerospace Science and Technology.
  46. Santiuste C., Sanchez-Saez, S., Barbero, E. (2008), "Dynamic analysis of bending-torsion coupled composite beams using the flexibility influence function method", J. Mech. Sci., 50, 1611-1618. https://doi.org/10.1016/j.ijmecsci.2008.10.005
  47. Shariq, M., Abbas, H. and Prasad, J. (2017), "Effect of GGBFS on time dependant deflection of Rc beam", Comput. Concrete, 19(1), 51-58. https://doi.org/10.12989/cac.2017.19.1.051
  48. Tagrara, S.H., Benachour, A., Bachir Bouiadjra, M. and Tounsi, A. (2015), "On bending, buckling and vibration responses of functionally graded carbon nanotube-reinforced composite beams", Steel Compos. Struct., 19(5), 1259-1277. https://doi.org/10.12989/scs.2015.19.5.1259
  49. Tounsi, A., Houari, M.S.A. and Bessaim, A. (2016), "A new 3-unknowns non-polynomial plate theory for buckling and vibration of functionally graded sandwich plate", Struct. Eng. Mech., 60(4), 547-565. https://doi.org/10.12989/sem.2016.60.4.547
  50. Tounsi, A., Houari, M.S.A., Benyoucef, S. and Adda Bedia, E.A. (2013), "A refined trigonometric shear deformation theory for thermoelastic bending of functionally graded sandwich plates", Aerosp. Sci. Technol., 24, 209-220. https://doi.org/10.1016/j.ast.2011.11.009
  51. Wang, Z.X. and Shen, H.S. (2012), "Nonlinear vibration and bending of sandwich plates with nanobube reinforced composite face sheets", Compos. Part-B, 43, 411-421. https://doi.org/10.1016/j.compositesb.2011.04.040
  52. Zemri, A., Houari, M.S.A., Bousahla, A.A. and Tounsi, A. (2015), "A mechanical response of functionally graded nanoscale beam: An assessment of a refined nonlocal shear deformation theory beam theory", Struct. Eng. Mech., 54(4), 693-710. https://doi.org/10.12989/sem.2015.54.4.693
  53. Zhang, W., Lu, S.F. and Yang, X.D. (2013), "Analysis on nonlinear dynamics of a deploying composite laminated cantilever plate", Nonlinear Dynam., 76, 69-93.
  54. Zhen, X.W. and Shen, H.S. (2012), "Nonlinear dynamic response of nanotube-reinforced composite plates resting on elastic foundations in thermal environments", Nonlinear Dynam., 70(1), 735-754. https://doi.org/10.1007/s11071-012-0491-2
  55. Zidi, M., Tounsi, A., Houari, M.S.A. and Beg, O.A. (2014), "Bending analysis of FGM plates under hygro-thermomechanical loading using a four variable refined plate theory", Aerosp. Sci. Technol., 34, 24-34. https://doi.org/10.1016/j.ast.2014.02.001