DOI QR코드

DOI QR Code

Study of the effect of vacuum annealing on sputtered SnxOy thin films by SnO/Sn composite target

SnO/Sn 혼합 타겟으로 스퍼터 증착된 SnO 박막의 열처리 효과

  • Kim, Cheol (Graduate School of Nano-IT Design Convergence, Seoul National University of Science and Technology) ;
  • Cho, Seungbum (Graduate School of Nano-IT Design Convergence, Seoul National University of Science and Technology) ;
  • Kim, Sungdong (Department of Mechanical System Design Engineering, Seoul National University of Science and Technology) ;
  • Kim, Sarah Eunkyung (Graduate School of Nano-IT Design Convergence, Seoul National University of Science and Technology)
  • 김철 (서울과학기술대학교 나노IT디자인융합대학원) ;
  • 조승범 (서울과학기술대학교 나노IT디자인융합대학원) ;
  • 김성동 (서울과학기술대학교 기계시스템디자인공학과) ;
  • 김사라은경 (서울과학기술대학교 나노IT디자인융합대학원)
  • Received : 2017.05.16
  • Accepted : 2017.06.23
  • Published : 2017.06.30

Abstract

Conductive $Sn_xO_y$ thin films were fabricated via RF reactive sputtering using SnO:Sn (80:20 mol%) composite target. The composite target was used to produce a chemically stable composition of $Sn_xO_y$ thin film while controlling structural defects by chemical reaction between tin and oxygen. During sputtering pressure, RF power, and substrate temperature were fixed, and oxygen partial pressure was varied from 0% to 12%. Annealing process was carried out at $300^{\circ}C$ for 1 hour in vacuum. Except $P_{O2}=0%$ sample, all samples showed the transmittance of 80~90% and amorphous phase before and after annealing. Electrically stable p-type $Sn_xO_y$ thin film with high transmittance was only obtained from the oxygen partial pressure at 12%. The carrier concentration and mobility for the $P_{O2}=12%$ were $6.36{\times}10^{18}cm^{-3}$ and $1.02cm^2V^{-1}s^{-1}$ respectively after annealing.

SnO:Sn(80:20 mol%) 혼합 타겟을 이용한 RF 반응성 스퍼터링으로 투명하고 전도성이 있는 $Sn_xO_y$ 박막을 증착하였다. 혼합 타겟은 화학적으로 안정한 조성과 높은 투과도를 주는 세라믹 타겟과 Sn과 산소의 반응성 증착으로 박막내 구조적 결함 조절이 용이한 금속 타겟의 장점을 고루 택하고 있다. 산소 분압 0%~12% 구간에서 박막을 증착하였으며, 증착 후 $300^{\circ}C$에서 1시간 동안 진공 열처리를 진행하였다. Sn 함량이 많은 $P_{O2}=0%$의 경우를 제외하고 모든 시편들은 열 처리 전후에 80~90% 이상의 투과도를 보였으며, 안정된 p형 $Sn_xO_y$ 박막은 $P_{O2}=12%$에서 확인하였고, $P_{O2}=12%$에서 열 처리 후 캐리어 농도와 이동도는 각각 $6.36{\times}10^{18}cm^{-3}$$1.02cm^2V^{-1}s^{-1}$ 이었다.

Keywords

References

  1. M. Batzill, and U. Diebold, "The Surface and Materials Science of Tin Oxide", Prog. Surf. Sci., 79, 47 (2005). https://doi.org/10.1016/j.progsurf.2005.09.002
  2. J. Um, and S. E. Kim, "Homo-Junction pn Diode Using p-Type SnO and n-Type $SnO_2$ Thin Films", ECS Solid State Letters, 3(8), 94 (2014). https://doi.org/10.1149/2.0051408ssl
  3. B. G. Lewis, and D.C. Paine, "Applications and Processing of Transparent Conducting Oxides", MRS Bulletin, 25(8), 22 (2000).
  4. J. Kim, B. Kim, S. Choi, J. Park, and J. Park, "$SnO_2$ Semiconducting Nanowires Network and Its $NO_2$ Gas Sensor Application (in Korean)", Kor. J. Mater. Res., 20(4), 223 (2010). https://doi.org/10.3740/MRSK.2010.20.4.223
  5. S. E. Kim, and M. Oliver, "Structural, Electrical, and Optical Properties of Reactively Sputtered $SnO_2$ Thin Films", Met. Mater. Int., 16(3), 441 (2010). https://doi.org/10.1007/s12540-010-0614-6
  6. W. Guo, L. Fu,Y. Zhang, K. Zhang, L. Y. Liang, Z. M. Liu, and H. T. Cao, "Microstructure, Optical, and Electrical Properties of p-type SnO Thin Films", Appl. Phys. Lett., 96, 042113 (2010). https://doi.org/10.1063/1.3277153
  7. J. L. Huang, Y. Pan, J. Y. Chang, and B. S. Yau, "Annealing Effects on Properties of Antimony Tin Oxide Thin Films Deposited by RF Reactive Magnetron", Surf. Coat. Tech., 184, 188 (2004). https://doi.org/10.1016/j.surfcoat.2003.11.004
  8. V. V. Kissine, S. A. Voroshilov, and V. V. Sysoev, "Oxygen Flow Effect on Gas Sensitivity Properties of Tin Oxide Film Prepared by R.F. Sputtering", Sens. Actuat. B, 55, 55 (1999). https://doi.org/10.1016/S0925-4005(99)00022-2
  9. I. H. Kim, J. H. Ko, D. Kim, K. S. Lee, T. S. Lee, J. Jeong, B. Cheong, Y. J. Baik, and W. M. Kim, "Scattering Mechanism of Transparent Conducting Tin Oxide Films Prepared by Magnetron Sputtering", Thin Solid Films, 515, 2475 (2006). https://doi.org/10.1016/j.tsf.2006.07.020
  10. E. Cetinorgua, S. Goldsmith, Y. Rosenberg, and R. L. Boxman, "Influence of Annealing on the Physical Properties of Filtered Vacuum Arc Deposited Tin Oxide Thin Films", J. Non-Crystalline Solids, 353, 2595 (2007). https://doi.org/10.1016/j.jnoncrysol.2007.04.031
  11. S. Kim, Y. Kim, S. Kim, and S. E. Kim, "The Effect of Vacuum Annealing of Tin Oxide Thin Films Obtained by RF Sputtering", J. Kor. Ceram. Soc., 48(4), 316 (2011). https://doi.org/10.4191/KCERS.2011.48.4.316
  12. Z. R. Dai, Z. W. Pan, and Z. L. Wang, "Growth and Structure Evolution of Novel Tin Oxide Diskettes", J. Am. Chem. Soc., 124, 8673 (2002). https://doi.org/10.1021/ja026262d
  13. C. Y. Koo, K. J. Kim, K. H. Kim, and H. Y. Lee, "Room Temperature Deposition and Heat Treatment Behavior of ATO Thin Films by Ion Beam Sputtering (in Korean)", J. Kor. Ceram. Soc., 37(11), 1025 (2000).
  14. Y. Kim, J. Um, S. Kim, and S. E. Kim, "P- to n-Type Conductivity Inversion of Nitrogen-Incorporated SnO Deposited via Sputtering", ECS Solid State Letters, 1(2), 29 (2012).
  15. E. Fortunato, R. Barros, P. Barquinha, V. Figueiredo, S. H. Ko Park, C. S. Hwang, and R. Martins, "Transparent p-type $SnO_X$ thin film transistors produced by reactive rf magnetron sputtering followed by low temperature annealing", Appl. Phys. Lett, 97, 052105 (2010). https://doi.org/10.1063/1.3469939
  16. A. Togo, F. Oba, and I. Tanaka, "First-principles calculations of native defects in tin monoxide," Physical Review B, 74, 195128-1 (2006). https://doi.org/10.1103/PhysRevB.74.195128
  17. Y. H. You, S. M. Bae, Y. H. Kim, and J. H. Hwang, "Deposition Optimization and Property Characterization of Copper-Oxide Thin Films Prepared by Reactive Sputtering", J. Microelectron. Packag. Soc., 20(1), 27 (2013). https://doi.org/10.6117/kmeps.2013.20.1.027
  18. C. Kim, S. Kim, and S. E. Kim, "Analysis of Sputter-Deposited SnO thin Film with SnO/Sn Composite Target", Korean J. Mater. Res., 26(4), 222 (2016). https://doi.org/10.3740/MRSK.2016.26.4.222
  19. H. Luo, L. Y. Liang, H. T. Cao, Z. M. Liu, and F. Zhuge, "Structural, Chemical, Optical, and Electrical Evolution of $SnO_X$ Films Deposited by Reactive rf Magnetron Sputtering", ACS Appl. Mater. Interfaces, 4, 5673 (2012). https://doi.org/10.1021/am301601s
  20. Y. Ogo, H. Hiramatsu, K. Nomura, H. Yanagi, T. Kamiya, M. Hirano, and H. Hosono, "p -channel thin-film transistor using p -type oxide semiconductor, SnO", Appl. Phys. Lett., 93, 032113 (2008). https://doi.org/10.1063/1.2964197
  21. K. Nomura, T. Kamiya, and H. Hosono, "Ambipolar Oxide Thin-Film Transistor", Adv. Mater., 23, 3431 (2011). https://doi.org/10.1002/adma.201101410
  22. C. V. Thompson, "Grain Growth in Polycrystalline Thin Films of Semiconductors", Inter. Sci., 6, 85 (1998).
  23. C. Suryanaraynara, and M. G. Norton, "X-ray diffraction - A Practical Approach", p.212, Plenum Press, New York, (1998).
  24. J. Szuber, G. Czempik, R. Larciprete, D. Koziej, and B. Adamowicz, "XPS study of the L-CVD deposited SnO thin films exposed to oxygen and hydrogen", Thin Solid Films, 391, 198 (2001). https://doi.org/10.1016/S0040-6090(01)00982-8
  25. G. Kim, S. G. Ansari, H. Seo, Y. Kim, and H. Shin, "Effect of annealing temperature on structural and bonded states of titanate nanotube films", J. Appl. Phys. 101, 024314 (2007). https://doi.org/10.1063/1.2427094
  26. E. Burstein, "Anomalous Optical Absorption Limit in InSb", Phys. Rev., 93(3), 632 (1954). https://doi.org/10.1103/PhysRev.93.632