DOI QR코드

DOI QR Code

멀티 플립칩 본딩용 비전도성 접착제(NCP)의 열전도도에 미치는 미세 알루미나 필러의 첨가 영향

Effect of Fine Alumina Filler Addition on the Thermal Conductivity of Non-conductive Paste (NCP) for Multi Flip Chip Bonding

  • 정다훈 (한국생산기술연구원 용접접합그룹/마이크로조이닝센터) ;
  • 임다은 (한국생산기술연구원 용접접합그룹/마이크로조이닝센터) ;
  • 이소정 (한국생산기술연구원 용접접합그룹/마이크로조이닝센터) ;
  • 고용호 (한국생산기술연구원 용접접합그룹/마이크로조이닝센터) ;
  • 김준기 (한국생산기술연구원 용접접합그룹/마이크로조이닝센터)
  • Jung, Da-Hoon (Welding & Joining R&D Group/Micro-Joining Center, Korea Institute of Industrial Technology (KITECH)) ;
  • Lim, Da-Eun (Welding & Joining R&D Group/Micro-Joining Center, Korea Institute of Industrial Technology (KITECH)) ;
  • Lee, So-Jeong (Welding & Joining R&D Group/Micro-Joining Center, Korea Institute of Industrial Technology (KITECH)) ;
  • Ko, Yong-Ho (Welding & Joining R&D Group/Micro-Joining Center, Korea Institute of Industrial Technology (KITECH)) ;
  • Kim, Jun-Ki (Welding & Joining R&D Group/Micro-Joining Center, Korea Institute of Industrial Technology (KITECH))
  • 투고 : 2016.12.08
  • 심사 : 2017.05.21
  • 발행 : 2017.06.30

초록

실리콘 칩을 적층하는 3D 멀티 플립칩 패키지의 경우 방열문제가 대두됨에 따라 접착 접합부의 열전도도 향상이 요구되고 있다. 본 연구에서는 플립칩 본딩용 비전도성 접착제(NCP)에 있어서 알루미나 필러의 첨가가 NCP의 물성 및 열전도도에 미치는 영향을 조사하였다. 알루미나 필러는 미세피치 플립칩 접속을 위해 평균입도 400 nm의 미세분말을 사용하였다. 알루미나 필러 함량이 0~60 wt%까지 증가함에 따라 60 wt% 첨가 시 0.654 W/mK에 도달하였다. 이는 동일 첨가량 실리카의 0.501 W/mK보다는 높은 열전도도이지만, 동일 함량의 조대한 알루미나 분말을 첨가한 경우에 비해서는 낮은 열전도도로, 미세 플립칩 본딩을 위해 입도가 미세한 분말을 첨가하는 것은 열전도도에 있어서는 불리한 효과로 작용함을 알 수 있었다. NCP의 점도는 40 wt% 이상에서 급격히 증가하는 현상을 나타내었는데, 이는 미세 입도에 따른 필러 간 상호작용의 증가에 기인하는 것으로, 미세피치 플립칩 본딩을 위해 열전도도가 우수한 미세 알루미나 분말을 사용하기 위해서는 낮은 점도를 유지하면서 필러 첨가량을 증가시킬 수 있는 분산방안이 필요한 것으로 판단되었다.

As the heat dissipation problem is increased in 3D multi flip chip packages, an improvement of thermal conductivity in bonding interfaces is required. In this study, the effect of alumina filler addition was investigated in non-conductive paste(NCP). The fine alumina filler having average particles size of 400 nm for the fine pitch interconnection was used. As the alumina filler content was increased from 0 to 60 wt%, the thermal conductivity of the cured product was increased up to 0.654 W/mK at 60 wt%. It was higher value than 0.501 W/mK which was reported for the same amount of silica. It was also found out that the addition of fine sized alumina filler resulted in the smaller decrease in thermal conductivity than the larger sized particles. The viscosity of NCP with alumina addition was increased sharply at the level of 40 wt%. It was due to the increase of the interaction between the filler particles according to the finer particle size. In order to achieve the appropriate viscosity and excellent thermal conductivity with fine alumina fillers, the highly efficient dispersion process was considered to be important.

키워드

참고문헌

  1. L. K. The, E. Anto, C. C. Wong, S. G. Mhaisalkar, E. H. Wong, P. S. Teo, and Z. Chen, "Development and Reliability of Non-conductive Adhesive Flip-chip Packages", Thin Solid Films, 462, 446 (2004).
  2. P. S. Ho, G. Wang, M. Ding, J. -H. Zhao, and X. Dai, "Reliability Issues for Flip-chip Packages", Microelectron. Reliability, 44, 719 (2004). https://doi.org/10.1016/j.microrel.2004.01.007
  3. S. M. Chung, and Y. H. Kim, "Improvement of Reliability of COG Bonding Using in, Sn Bumps and NCA", J. Microelectron. Packag. Soc., 13(2), 21 (2006).
  4. S. W. R. Lee, R. Hon, S. X. D. Zhang, and C. K. Wong, "3D Stacked Flip Chip Packaging with Through Silicon Vias and Copper Plating or Conductive Adhesive Filling", Electronic Components and Technology Conference, 796 (2005).
  5. W. S. Lee, and J. Yu, "Comparative Study of Thermally Conductive Fillers in Underfill for The Electronic Components", Diamond & Related Materials, 14, 1647 (2005). https://doi.org/10.1016/j.diamond.2005.05.008
  6. J. -R Choi and S. -J Park, "A Study on Thermal Conductivity and Fracture Toughness of Alumina Nanofibers and Powdersfilled Epoxy Matrix Composites(in Korean)", Polymer (Korea), 37(1), 47 (2012).
  7. B. I. Noh, J. B. Lee, S. H. Won, and S. B. Jung, "Characteristics of Reliability for Flip Chip Package with Non-conductive paste", J. Microelectron. Packag. Soc., 14(4), 9 (2007).
  8. K. W. Jang, W. S. Kwon, M. J. Yim, and K. W. Paik, "Effects of Silica Filler and Diluent on Material Properties of Non-Conductive Pastes and Thermal Cycling Reliability of Flip Chip Assembly", J. Microelectron. Packag. Soc., 10(3) (2003).
  9. W. S. Lee, I. Y. Han, J. Yu, S. J. Kim, and K. Y. Byun, "Thermal Characterization of Thermally Conductive Underfill for A Flip-chip Package Using Novel Temperature Sensing Technique", Thermochimica Acta, 455, 148 (2007). https://doi.org/10.1016/j.tca.2006.11.034
  10. H. Li, K. I. Jacob, and C. P. Wong, "An Improvement of Thermal Conductivity of Underfill Materials for Flip-Chip Packages", IEEE Transactions on Advanced Packaging, 26(1), 25 (2003). https://doi.org/10.1109/TADVP.2003.811546
  11. Y. S. Choi, H. W. Lee, J. H. Lee, Y. L. Park, and C. E. Kim, "The Preparation of Alumina Fiber by Sol-gel Method: (II) Properties of Fiber Spun by TEA Complexed sol(in Korean)", Journal of the Korean Ceramic Society, 32(9), 995 (1995).
  12. Y. Hwang, J. Kim, and W. Cho, "Thermal Conductivity of Thermally Conductive Ceramic Composites and Silicon Carbide/Epoxy Composites through Wetting Process(in Korean)", Polymer(Korea), 38(6), 782 (2014).