DOI QR코드

DOI QR Code

Characteristics of Plastic Scintillators Fabricated by a Polymerization Reaction

  • Lee, Cheol Ho (Department of Nuclear Engineering, Hanyang University) ;
  • Son, Jaebum (Department of Nuclear Engineering, Hanyang University) ;
  • Kim, Tae-Hoon (Department of Nuclear Engineering, Hanyang University) ;
  • Kim, Yong Kyun (Department of Nuclear Engineering, Hanyang University)
  • Received : 2016.04.27
  • Accepted : 2016.10.03
  • Published : 2017.06.25

Abstract

Three plastic scintillators of 4.5 cm diameter and 2.5-cm length were fabricated for comparison with commercial plastic scintillators using polymerization of the styrene monomer 2.5-diphenyloxazole (PPO) and 1,4-bis benzene (POPOP). Their maximum emission wavelengths were determined at 426.06 nm, 426.06 nm, and 425.00 nm with a standard error of 0.2% using a Varian spectrophotometer (Agilent, Santa Clara, CA, USA). Compton edge spectra were measured using three gamma ray sources [i.e., cesium 137 ($^{137}Cs$), sodium 22 ($^{22}Na$), and cobalt 60 ($^{60}Co$)]. Energy was calibrated by analyzing the Compton edge spectra. The fabricated scintillators possessed more than 99.7% energy linearity. Light output was comparable to that of the BC-408 scintillator (Saint-Gobain, Paris, France). The fabricated scintillators showed a light output of approximately 59-64% of that of the BC-408 scintillator.

Keywords

References

  1. H. Penttila, Characterization of a New Plastic Scintillation Material and Comparison with Liquid BC-501A Scintillator (Saint-Gobain, Paris, France), Oleksii Poleshchuk, Jyvaskyla, Finland, 2015.
  2. D. Reilly, N. Ensslin, H. Smith Jr., S. Kreiner, Passive nondestructive assay of nuclear materials, in: Doug Reilly, Norbert Ensslin, Hastings Smith Jr. (Eds.), Los Alamos National Lab, Los Alamos, NM, USA, 1991.
  3. Z. Li, W. Chong, H. Yuekun, Z. Xiaojian, S. Feng, Z. Sun, W. Jinjie, A. Henghua, Z. Yuda, Z. Ziping, W. Yifang, Properties of plastic scintillators after irradiation, Nucl. Instrum. Methods A 552 (2005) 449-455. https://doi.org/10.1016/j.nima.2005.06.075
  4. M. Bertolaccini, C. Bussolati, S. Cova, I. De Lotto, E. Gatti, Optimum processing for amplitude distribution evaluation of a sequence of randomly spaced pulses, Nucl. Instrum. Methods Phys. Res. A61 (1968) 84-88.
  5. M. Moszynski, M. Kapusta, M. Mayhugh, D. Wolski, S.O. Flyckt, Absolute light output of scintillators, IEEE Trans. Nucl. Sci. 44 (1997) 1052-1061. https://doi.org/10.1109/23.603803
  6. Organic Scintillation Materials, Saint-Gobain Crystals, Paris, France.
  7. G.H. Kim, C.H. Park, C.H. Jung, K.W. Lee, B.K. Seo, Development of the ZnS(Ag)/BC-408 phoswich detector for monitoring radioactive contamination inside pipes, J. Korean Assoc. Radiat. Prot. 31 (2006) 123-128.
  8. B. Richard, Firestone Table of Isotopes, eigth ed., Wiley, New York, 1999.
  9. Photomultiplier Tubes and Related Products, Hamamatsu Photonics Co., Hamamatsu City, Japan, 2010.

Cited by

  1. Improved 3D Printing Plastic Scintillator Fabrication vol.73, pp.7, 2017, https://doi.org/10.3938/jkps.73.887
  2. Initiator-free preparation and properties of polystyrene-based plastic scintillators vol.26, pp.8, 2017, https://doi.org/10.1007/s10965-019-1838-x
  3. Characteristics of 3D Printed Plastic Scintillator vol.225, pp.None, 2017, https://doi.org/10.1051/epjconf/202022501005
  4. Characterization of novel 3D printed plastic scintillation dosimeters vol.6, pp.5, 2017, https://doi.org/10.1088/2057-1976/aba880
  5. Low Energy Beta Emitter Measurement: A Review vol.8, pp.4, 2020, https://doi.org/10.3390/chemosensors8040106
  6. Muon event localisation with AI vol.1001, pp.None, 2017, https://doi.org/10.1016/j.nima.2021.165237
  7. Effect of high Z materials loading in the performance of polystyrene-based thin-film plastic scintillators vol.1008, pp.None, 2017, https://doi.org/10.1016/j.nima.2021.165454