References
- W.G. Kim, J.Y. Park, S.J. Kim, J. Jang, Reliability assessment of creep rupturelife for Gr. 91 steel, Mater. Des. 51 (2013) 1045-1051. https://doi.org/10.1016/j.matdes.2013.05.013
- E. Issac Samual, B.K. Choudhary, K. Bhau Sankara Rao, Influence of post weld heat treatment on tensile properties of 9Cr-1Mo ferritic steel base metal, Mater. Sci. Technol. 23 (2007) 992-998. https://doi.org/10.1179/174328407X161295
- S.L. Mannan, S.C. Chetal, B. Raj, S.B. Bhoje, Selection of materials for prototype fast breeder reactor, Trans. Indian Inst. Met. 56 (2003) 155-178.
- B.K. Choudhary, V.S. Srinivasan, M.D. Mathew, Influence of strain rate and temperature on tensile properties of 9Cr-1Mo ferritic steel, Mater. High Temp. 28 (2011) 155-161.
- B.K. Choudhary, E. Issac Samual, Creep behavior of modified 9Cr-1Mo ferritic steel, J. Nucl. Mater. 412 (2011) 82-89. https://doi.org/10.1016/j.jnucmat.2011.02.024
- B. Raj, B.K. Choudhary, A perspective on creep and fatigue issues in sodiumcooled fast reactors, Trans. Indian Inst. Met. 63 (2010) 75-84. https://doi.org/10.1007/s12666-010-0011-3
- K. Kimura, Y. Toda, H. Kushima, K. Sawada, Creep strength of high chromium steel with ferrite matrix, in: I.A. Shibli, S.R. Holdsworth (Eds.), Proceedings of the 2nd ECCC Creep Conference on Creep & Fracture in High Temperature Components, Zurich ETD, 2009, pp. 935-949.
- V.S. Srinivasan, B.K. Choudhary, M.D. Mathew, T. Jayakumar, Long-term creep-rupture strength prediction for modified 9Cr-1Mo ferritic steel and type 316L(N) austenitic stainless steel, Mater. High Temp. 29 (2012) 41-48. https://doi.org/10.3184/096034012X13269690282656
- W.G. Kim, J.Y. Park, S.D. Hong, S.J. Kim, Probabilistic assessment of creep crack growth rate for Gr. 91 steel, Nucl. Eng. Des. 241 (2011) 3580-3586. https://doi.org/10.1016/j.nucengdes.2011.06.042
- D.K. Shetty, T. Mura, M. Meshii, Analysis of creep deformation under cyclic loading conditions, Mater. Sci. Eng. 20 (1975) 261-266. https://doi.org/10.1016/0025-5416(75)90158-5
- J. Zrnik, J.A. Wang, Y. Yu, L. Peijing, P. Hornak, Influence of cycling frequency on cyclic creep characteristics of nickel base single-crystal superalloy, Mater. Sci. Eng. A A234-A236 (1997) 884-888.
- J.H. Eom, D.H. Shin, S.W. Nam, Effects of stress amplitude and friction stress on cyclic creep deformation, J. Kor. Inst. Met. 20 (1982) 922-926.
- Y.K. Park, T.S. Kim, J.H. Choi, M.Y. Wee, A study on cyclic creep behavior of Zircaloy-4 at 0.3 Tm, J. Kor. Inst. Met. Mater. 38 (2000) 624-628.
- M. Boulbibane, A.R.S. Ponter, A method for the evaluation of design limits for structural materials in a cyclic state of creep, Eur. J. Mech. A Solid 21 (2002) 899-914. https://doi.org/10.1016/S0997-7538(02)01244-5
- H.D. Chandler, S. Kwofie, A description of cyclic creep under conditions of axial cyclic and mean stresses, Int. J. Fatigue 27 (2005) 541-545. https://doi.org/10.1016/j.ijfatigue.2004.09.009
- W.G. Kim, J.Y. Park, I.M.W. Ekaputra, S.J. Kim, J. Jang, Cyclic creep behavior under ten-tension loading cycles with hold time of modified 9Cr-1Mo steel, Mater. High Temp. 31 (2014) 249-257. https://doi.org/10.1179/1878641314Y.0000000021
- ASTM International, Standard test method for conducting creep, creep-rupture, and stress-rupture tests of metallic materials, ASTM (2011). E139-11.
- G. Qin, S.V. Hainsworth, A. Strang, P.F. Morris, P.D. Clarke, A.P. Backhouse, TEM studies of microstructural evolution in creep exposed E911, in: I.A. Shibli, S.R. Holdsworth (Eds.), Proceedings of the 2nd ECCC Creep Conf. on Creep & Fracture in High Temperature Components, Zurich ETD, 2009, pp. 889-899.
Cited by
- Non-linear modeling of stress relaxation curves for Grade 91 steel vol.32, pp.3, 2017, https://doi.org/10.1007/s12206-018-0217-6
- Creep and creep crack growth behaviors for base, weld, and heat affected zone in a grade 91 weldment vol.53, pp.2, 2017, https://doi.org/10.1016/j.net.2020.07.015