DOI QR코드

DOI QR Code

Multiscale Simulation of Yield Strength in Reduced-Activation Ferritic/Martensitic Steel

  • Wang, Chenchong (Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University) ;
  • Zhang, Chi (Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University) ;
  • Yang, Zhigang (Key Laboratory of Advanced Materials of Ministry of Education, School of Materials Science and Engineering, Tsinghua University) ;
  • Zhao, Jijun (State Key Laboratory of Materials Modification by Laser, Electron, and Ion Beams, School of Physics and Optoelectronic Technology and College of Advanced Science and Technology, Dalian University of Technology)
  • Received : 2016.07.24
  • Accepted : 2016.10.02
  • Published : 2017.06.25

Abstract

One of the important requirements for the application of reduced-activation ferritic/martensitic (RAFM) steel is to retain proper mechanical properties under irradiation and high-temperature conditions. To simulate the yield strength and stress-strain curve of steels during high-temperature and irradiation conditions, a multiscale simulation method consisting of both microstructure and strengthening simulations was established. The simulation results of microstructure parameters were added to a superposition strengthening model, which consisted of constitutive models of different strengthening methods. Based on the simulation results, the strength contribution for different strengthening methods at both room temperature and high-temperature conditions was analyzed. The simulation results of the yield strength in irradiation and high-temperature conditions were mainly consistent with the experimental results. The optimal application field of this multiscale model was 9Cr series (7-9 wt.%Cr) RAFM steels in a condition characterized by 0.1-5 dpa (or 0 dpa) and a temperature range of $25-500^{\circ}C$.

Keywords

References

  1. Z.X. Xia, C. Zhang, H. Lan, Z.Q. Liu, Z.G. Yang, Effect of magnetic field on interfacial energy and precipitation behavior of carbides in reduced activation steels, Mater. Lett. 65 (2011) 937-939. https://doi.org/10.1016/j.matlet.2010.12.041
  2. M.N. Babu, G. Sasikala, B.S. Dutt, S. Venugopal, A.K. Bhaduri, T. Jayakumar, Fatigue crack growth behavior of RAFM steel in Paris and threshold regimes at different temperatures, Nucl. Eng. Des. 269 (2014) 103-107. https://doi.org/10.1016/j.nucengdes.2013.08.014
  3. W. Wang, S. Liu, G. Xu, B. Zhang, Q. Huang, Effect of thermal aging on microstructure and mechanical properties of China low-activation martensitic steel at $550^{\circ}C$, Nucl. Eng. Technol. 48 (2016) 518-524. https://doi.org/10.1016/j.net.2015.11.004
  4. T.K. Kim, S. Noh, S.H. Kang, J.J. Park, H.J. Jin, M.K. Lee, J. Jang, C.K. Rhee, Current status and future prospective of advanced radiation resistant oxide dispersion strengthened steel (ARROS) development for nuclear reactor system applications, Nucl. Eng. Technol. 48 (2016) 572-594. https://doi.org/10.1016/j.net.2015.12.005
  5. L. Huang, X. Hu, W. Yan, W. Sha, F. Xiao, Y. Shan, K. Yang, Laves-phase in the China low activation martensitic steel after long-term creep exposure, Mater. Des. 63 (2014) 333-335. https://doi.org/10.1016/j.matdes.2014.06.028
  6. W.B. Liu, C. Zhang, Z.X. Xia, Z.G. Yang, P.H. Wang, J.M. Chen, Strain-induced refinement and thermal stability of a nanocrystalline steel produced by surface mechanical attrition treatment, Mater. Sci. Eng. A 568 (2013) 176-183. https://doi.org/10.1016/j.msea.2012.12.090
  7. G.F. Wang, A. Strachan, C. Tahir, W.A. Goddard, Calculating the Peierls energy and Peierls stress from atomistic simulations of screw dislocation dynamics: application to bcc tantalum, Model. Simul. Mat. Sci. Eng. 12 (2004) S371-S389. https://doi.org/10.1088/0965-0393/12/4/S06
  8. F.R.N. Nabarro, Fifty-year study of the PeierlseNabarro stress, Mater. Sci. Eng. A 234-236 (1997) 67-76. https://doi.org/10.1016/S0921-5093(97)00184-6
  9. Y.Z. Zhu, S.Z. Wang, B.L. Li, Z.M. Yin, Q. Wan, P. Liu, Grain growth and microstructure evolution based mechanical property predicted by a modified Hall-Petch equation in hot worked Ni76Cr19AlTiCo alloy, Mater. Des. 55 (2014) 456-462. https://doi.org/10.1016/j.matdes.2013.10.023
  10. N. Hansen, Hall-Petch relation and boundary strengthening, Scr. Mater. 51 (2004) 801-806. https://doi.org/10.1016/j.scriptamat.2004.06.002
  11. M.F. Ashby, On the Orowan Stress, MIT Press, Cambridge, MA, 1969.
  12. J. Friedel, Dislocations, Pergamon Press, New York, 1964.
  13. H. Meckings, U.F. Kocks, Kinetics of flow and strainhardening, Acta Metallurgica 29 (1981) 1865-1875. https://doi.org/10.1016/0001-6160(81)90112-7
  14. J. Kang, T. Ingendahl, W. Bleck, A constitutive model for the tensile behaviour of TWIP steels: composition and temperature dependencies, Mater. Des. 90 (2016) 340-349. https://doi.org/10.1016/j.matdes.2015.10.126
  15. O. Bouaziz, Revised storage and dynamic recovery of dislocation density evolution law: toward a generalized KockseMecking model of strain-hardening, Adv. Eng. Mater. 14 (2012) 759-761. https://doi.org/10.1002/adem.201200083
  16. J.S. Wang, M.D. Mulholland, G.B. Olson, D.N. Seidman, Prediction of the yield strength of a secondary-hardening steel, Acta Mater. 61 (2013) 4939-4952. https://doi.org/10.1016/j.actamat.2013.04.052
  17. D. Terentyev, X. Xiao, A. Dubinko, A. Bakaeva, H. Duan, Dislocation-mediated strain hardening in tungsten: thermomechanical plasticity theory and experimental validation, J. Mech. Phys. Solids 85 (2015) 1-15.
  18. S.J. Zinkle, Y. Matsukawa, Observation and analysis of defect cluster production and interactions with dislocations, J. Nucl. Mater. 329-333 (2004) 88-96. https://doi.org/10.1016/j.jnucmat.2004.04.298
  19. A.K. Seeger, On the theory of radiation damage and radiation hardening, Second UN Conference on Peaceful Uses of Atomic Energy, United Nations, New York, 1958.
  20. C. Wang, C. Zhang, Z. Yang, J. Su, Y. Weng, Multi-scale simulation of hydrogen influenced critical stress intensity in high Co-Ni secondary hardening steel, Mater. Des. 87 (2015) 501-506. https://doi.org/10.1016/j.matdes.2015.08.040
  21. C. Wang, C. Zhang, Z. Yang, Austenite layer and precipitation in high Co-Ni maraging steel, Micron 67 (2014) 112-116. https://doi.org/10.1016/j.micron.2014.07.008
  22. P.P. Liu, M.Z. Zhao, Y.M. Zhu, J.W. Bai, F.R. Wan, Q. Zhan, Effects of carbide precipitate on the mechanical properties and irradiation behavior of the low activation martensitic steel, J. Alloys Compd. 579 (2013) 599-605. https://doi.org/10.1016/j.jallcom.2013.07.085
  23. R. Schaublin, P. Spatig, M. Victoria, Microstructure assessment of the low activation ferritic/martensitic steel F82H, J. Nucl. Mater. 258 (1998) 1178-1182.
  24. K.W. Tupholme, D. Dulieu, G.J. Butterworth, The effect of aging on the properties and structures of low activation martensitic 9 and 11-percent Cr, W, V stainless-steel, J. Nucl. Mater. 179 (1991) 684-688.
  25. X. Li, S. Schonecker, E. Simon, L. Bergqvist, H. Zhang, L. Szunyogh, J. Zhao, B. Johansson, L. Vitos, Tensile straininduced softening of iron at high temperature, Sci. Rep. 5 (2015) 16654. https://doi.org/10.1038/srep16654
  26. R. Lowrie, A.M. Gonas, Single-crystal elastic properties of tungsten from 24 degree to 1800 degree, J. Appl. Phys. 38 (1967) 4505. https://doi.org/10.1063/1.1709158
  27. S.L. Shang, W.Y. Wang, Y. Wang, Y. Du, J.X. Zhang, A.D. Patel, Z.K. Liu, Temperature-dependent ideal strength and stacking fault energy of fcc Ni: a first-principles study of shear deformation, J. Phys. Condens. Matter. 24 (2012) 155402. https://doi.org/10.1088/0953-8984/24/15/155402
  28. C.W. Lee, A. Chernatynskiy, P. Shukla, R.E. Stoller, S.B. Sinnott, S.R. Phillpot, Effect of pores and He bubbles on the thermal transport properties of $UO_2$ by molecular dynamics simulation, J. Nucl. Mater. 456 (2015) 253-259. https://doi.org/10.1016/j.jnucmat.2014.09.052
  29. Y. Watanabe, K. Morishita, T. Nakasuji,M. Ando, H. Tanigawa, Helium effects on microstructural change inRAFMsteel under irradiation: reaction rate theory modeling, Nucl. Instrum. Methods Phys. Res. B 352 (2015) 115-120. https://doi.org/10.1016/j.nimb.2014.12.031
  30. Y. Li, S. Hu, R. Montgomery, F. Gao, X. Sun, Phase-field simulations of intragranular fission gas bubble evolution in $UO_2$ under post-irradiation thermal annealing, Nucl. Instrum. Methods Phys. Res. B 303 (2013) 62-67. https://doi.org/10.1016/j.nimb.2012.11.028
  31. Y. Yu, X. He, F. Luo, L. Guo, Rate theory modeling of dislocation loops in RAFM steel under helium ion irradiation and comparison with experiments, Comp. Mater. Sci. 110 (2015) 34-38. https://doi.org/10.1016/j.commatsci.2015.08.003
  32. P.C. Millett, M. Tonks, Phase-field simulations of gas density within bubbles in metals under irradiation, Comp. Mater. Sci. 50 (2011) 2044-2050. https://doi.org/10.1016/j.commatsci.2011.02.006
  33. A. Abhishek, M. Warrier, R. Ganesh, A. Caro, Growth and structural determination of He bubbles in iron/chromium alloys using molecular dynamics simulations, J. Nucl. Mater. 472 (2016) 82-88. https://doi.org/10.1016/j.jnucmat.2016.02.001
  34. E. Nes, Recovery revisited, Acta Metall. Mater. 43 (1995) 2189-2207. https://doi.org/10.1016/0956-7151(94)00409-9
  35. H. Lim, C.C. Battaile, J.D. Carroll, B.L. Boyce, C.R. Weinberger, A physically based model of temperature and strain rate dependent yield in BCC metals: implementation into crystal plasticity, J. Mech. Phys. Solids 74 (2015) 80-96. https://doi.org/10.1016/j.jmps.2014.10.003
  36. A. Dunn, R. Dingreville, E. Martinez, L. Capolungo, Identification of dominant damage accumulation processes at grain boundaries during irradiation in nanocrystalline ${\alpha}$-Fe: a statistical study, Acta Mater. 110 (2016) 306-323. https://doi.org/10.1016/j.actamat.2016.03.026
  37. N. Ono, R. Nowak, S. Miura, Effect of deformation temperature on Hall-Petch relationship registered for polycrystalline magnesium, Mater. Lett. 58 (2004) 39-43. https://doi.org/10.1016/S0167-577X(03)00410-5
  38. K.L. Murty, Role and significance of source hardening in radiation embrittlement of iron and ferritic steels, J. Nucl. Mater. 270 (1999) 115-128. https://doi.org/10.1016/S0022-3115(98)00766-1
  39. E. Shafiei, High strain rate behavior of alloy 800H at high temperatures, J. Nucl. Mater. 473 (2016) 1-5. https://doi.org/10.1016/j.jnucmat.2016.02.005
  40. R.J. Kurtz, A. Alamo, E. Lucon, Q. Huang, S. Jitsukawa, A. Kimura, R.L. Klueh, G.R. Odette, C. Petersen, M.A. Sokolov, P. Spatig, J.W. Rensman, Recent progress toward development of reduced activation ferritic/martensitic steels for fusion structural applications, J. Nucl. Mater. 386-388 (2009) 411-417. https://doi.org/10.1016/j.jnucmat.2008.12.323
  41. N.M. Ghoniem, G. Po, S. Sharafat, Deformation mechanisms in ferritic/martensitic steels and the impact on mechanical design, J. Nucl. Mater. 441 (2013) 704-712. https://doi.org/10.1016/j.jnucmat.2013.03.045
  42. E.Wakai, M. Ando, T. Sawai, H. Tanigawa, T. Taguchi, R.E. Stoller, T. Yamamoto, Y. Kato, F. Takada, Effect of heat treatments on tensile properties of F82H steel irradiated by neutrons, J. Nucl. Mater. 367-370 (2007) 74-80. https://doi.org/10.1016/j.jnucmat.2007.03.164

Cited by

  1. Hydrogen's influence on reduced activation ferritic/martensitic steels' elastic properties: density functional theory combined with experiment vol.49, pp.8, 2017, https://doi.org/10.1016/j.net.2017.08.021
  2. Radiation damage in helium ion-irradiated reduced activation ferritic/martensitic steel vol.50, pp.1, 2017, https://doi.org/10.1016/j.net.2017.10.012
  3. Simulation of impact toughness with the effect of temperature and irradiation in steels vol.51, pp.1, 2017, https://doi.org/10.1016/j.net.2018.08.016
  4. Design of comprehensive mechanical properties by machine learning and high-throughput optimization algorithm in RAFM steels vol.52, pp.5, 2020, https://doi.org/10.1016/j.net.2019.10.014
  5. Effect of Ta and Ti on Modified Reduced Activation Ferritic/Martensitic Steels with a Thermo‐mechanical Control Process vol.92, pp.3, 2017, https://doi.org/10.1002/srin.202000477