References
- Z.X. Xia, C. Zhang, H. Lan, Z.Q. Liu, Z.G. Yang, Effect of magnetic field on interfacial energy and precipitation behavior of carbides in reduced activation steels, Mater. Lett. 65 (2011) 937-939. https://doi.org/10.1016/j.matlet.2010.12.041
- M.N. Babu, G. Sasikala, B.S. Dutt, S. Venugopal, A.K. Bhaduri, T. Jayakumar, Fatigue crack growth behavior of RAFM steel in Paris and threshold regimes at different temperatures, Nucl. Eng. Des. 269 (2014) 103-107. https://doi.org/10.1016/j.nucengdes.2013.08.014
-
W. Wang, S. Liu, G. Xu, B. Zhang, Q. Huang, Effect of thermal aging on microstructure and mechanical properties of China low-activation martensitic steel at
$550^{\circ}C$ , Nucl. Eng. Technol. 48 (2016) 518-524. https://doi.org/10.1016/j.net.2015.11.004 - T.K. Kim, S. Noh, S.H. Kang, J.J. Park, H.J. Jin, M.K. Lee, J. Jang, C.K. Rhee, Current status and future prospective of advanced radiation resistant oxide dispersion strengthened steel (ARROS) development for nuclear reactor system applications, Nucl. Eng. Technol. 48 (2016) 572-594. https://doi.org/10.1016/j.net.2015.12.005
- L. Huang, X. Hu, W. Yan, W. Sha, F. Xiao, Y. Shan, K. Yang, Laves-phase in the China low activation martensitic steel after long-term creep exposure, Mater. Des. 63 (2014) 333-335. https://doi.org/10.1016/j.matdes.2014.06.028
- W.B. Liu, C. Zhang, Z.X. Xia, Z.G. Yang, P.H. Wang, J.M. Chen, Strain-induced refinement and thermal stability of a nanocrystalline steel produced by surface mechanical attrition treatment, Mater. Sci. Eng. A 568 (2013) 176-183. https://doi.org/10.1016/j.msea.2012.12.090
- G.F. Wang, A. Strachan, C. Tahir, W.A. Goddard, Calculating the Peierls energy and Peierls stress from atomistic simulations of screw dislocation dynamics: application to bcc tantalum, Model. Simul. Mat. Sci. Eng. 12 (2004) S371-S389. https://doi.org/10.1088/0965-0393/12/4/S06
- F.R.N. Nabarro, Fifty-year study of the PeierlseNabarro stress, Mater. Sci. Eng. A 234-236 (1997) 67-76. https://doi.org/10.1016/S0921-5093(97)00184-6
- Y.Z. Zhu, S.Z. Wang, B.L. Li, Z.M. Yin, Q. Wan, P. Liu, Grain growth and microstructure evolution based mechanical property predicted by a modified Hall-Petch equation in hot worked Ni76Cr19AlTiCo alloy, Mater. Des. 55 (2014) 456-462. https://doi.org/10.1016/j.matdes.2013.10.023
- N. Hansen, Hall-Petch relation and boundary strengthening, Scr. Mater. 51 (2004) 801-806. https://doi.org/10.1016/j.scriptamat.2004.06.002
- M.F. Ashby, On the Orowan Stress, MIT Press, Cambridge, MA, 1969.
- J. Friedel, Dislocations, Pergamon Press, New York, 1964.
- H. Meckings, U.F. Kocks, Kinetics of flow and strainhardening, Acta Metallurgica 29 (1981) 1865-1875. https://doi.org/10.1016/0001-6160(81)90112-7
- J. Kang, T. Ingendahl, W. Bleck, A constitutive model for the tensile behaviour of TWIP steels: composition and temperature dependencies, Mater. Des. 90 (2016) 340-349. https://doi.org/10.1016/j.matdes.2015.10.126
- O. Bouaziz, Revised storage and dynamic recovery of dislocation density evolution law: toward a generalized KockseMecking model of strain-hardening, Adv. Eng. Mater. 14 (2012) 759-761. https://doi.org/10.1002/adem.201200083
- J.S. Wang, M.D. Mulholland, G.B. Olson, D.N. Seidman, Prediction of the yield strength of a secondary-hardening steel, Acta Mater. 61 (2013) 4939-4952. https://doi.org/10.1016/j.actamat.2013.04.052
- D. Terentyev, X. Xiao, A. Dubinko, A. Bakaeva, H. Duan, Dislocation-mediated strain hardening in tungsten: thermomechanical plasticity theory and experimental validation, J. Mech. Phys. Solids 85 (2015) 1-15.
- S.J. Zinkle, Y. Matsukawa, Observation and analysis of defect cluster production and interactions with dislocations, J. Nucl. Mater. 329-333 (2004) 88-96. https://doi.org/10.1016/j.jnucmat.2004.04.298
- A.K. Seeger, On the theory of radiation damage and radiation hardening, Second UN Conference on Peaceful Uses of Atomic Energy, United Nations, New York, 1958.
- C. Wang, C. Zhang, Z. Yang, J. Su, Y. Weng, Multi-scale simulation of hydrogen influenced critical stress intensity in high Co-Ni secondary hardening steel, Mater. Des. 87 (2015) 501-506. https://doi.org/10.1016/j.matdes.2015.08.040
- C. Wang, C. Zhang, Z. Yang, Austenite layer and precipitation in high Co-Ni maraging steel, Micron 67 (2014) 112-116. https://doi.org/10.1016/j.micron.2014.07.008
- P.P. Liu, M.Z. Zhao, Y.M. Zhu, J.W. Bai, F.R. Wan, Q. Zhan, Effects of carbide precipitate on the mechanical properties and irradiation behavior of the low activation martensitic steel, J. Alloys Compd. 579 (2013) 599-605. https://doi.org/10.1016/j.jallcom.2013.07.085
- R. Schaublin, P. Spatig, M. Victoria, Microstructure assessment of the low activation ferritic/martensitic steel F82H, J. Nucl. Mater. 258 (1998) 1178-1182.
- K.W. Tupholme, D. Dulieu, G.J. Butterworth, The effect of aging on the properties and structures of low activation martensitic 9 and 11-percent Cr, W, V stainless-steel, J. Nucl. Mater. 179 (1991) 684-688.
- X. Li, S. Schonecker, E. Simon, L. Bergqvist, H. Zhang, L. Szunyogh, J. Zhao, B. Johansson, L. Vitos, Tensile straininduced softening of iron at high temperature, Sci. Rep. 5 (2015) 16654. https://doi.org/10.1038/srep16654
- R. Lowrie, A.M. Gonas, Single-crystal elastic properties of tungsten from 24 degree to 1800 degree, J. Appl. Phys. 38 (1967) 4505. https://doi.org/10.1063/1.1709158
- S.L. Shang, W.Y. Wang, Y. Wang, Y. Du, J.X. Zhang, A.D. Patel, Z.K. Liu, Temperature-dependent ideal strength and stacking fault energy of fcc Ni: a first-principles study of shear deformation, J. Phys. Condens. Matter. 24 (2012) 155402. https://doi.org/10.1088/0953-8984/24/15/155402
-
C.W. Lee, A. Chernatynskiy, P. Shukla, R.E. Stoller, S.B. Sinnott, S.R. Phillpot, Effect of pores and He bubbles on the thermal transport properties of
$UO_2$ by molecular dynamics simulation, J. Nucl. Mater. 456 (2015) 253-259. https://doi.org/10.1016/j.jnucmat.2014.09.052 - Y. Watanabe, K. Morishita, T. Nakasuji,M. Ando, H. Tanigawa, Helium effects on microstructural change inRAFMsteel under irradiation: reaction rate theory modeling, Nucl. Instrum. Methods Phys. Res. B 352 (2015) 115-120. https://doi.org/10.1016/j.nimb.2014.12.031
-
Y. Li, S. Hu, R. Montgomery, F. Gao, X. Sun, Phase-field simulations of intragranular fission gas bubble evolution in
$UO_2$ under post-irradiation thermal annealing, Nucl. Instrum. Methods Phys. Res. B 303 (2013) 62-67. https://doi.org/10.1016/j.nimb.2012.11.028 - Y. Yu, X. He, F. Luo, L. Guo, Rate theory modeling of dislocation loops in RAFM steel under helium ion irradiation and comparison with experiments, Comp. Mater. Sci. 110 (2015) 34-38. https://doi.org/10.1016/j.commatsci.2015.08.003
- P.C. Millett, M. Tonks, Phase-field simulations of gas density within bubbles in metals under irradiation, Comp. Mater. Sci. 50 (2011) 2044-2050. https://doi.org/10.1016/j.commatsci.2011.02.006
- A. Abhishek, M. Warrier, R. Ganesh, A. Caro, Growth and structural determination of He bubbles in iron/chromium alloys using molecular dynamics simulations, J. Nucl. Mater. 472 (2016) 82-88. https://doi.org/10.1016/j.jnucmat.2016.02.001
- E. Nes, Recovery revisited, Acta Metall. Mater. 43 (1995) 2189-2207. https://doi.org/10.1016/0956-7151(94)00409-9
- H. Lim, C.C. Battaile, J.D. Carroll, B.L. Boyce, C.R. Weinberger, A physically based model of temperature and strain rate dependent yield in BCC metals: implementation into crystal plasticity, J. Mech. Phys. Solids 74 (2015) 80-96. https://doi.org/10.1016/j.jmps.2014.10.003
-
A. Dunn, R. Dingreville, E. Martinez, L. Capolungo, Identification of dominant damage accumulation processes at grain boundaries during irradiation in nanocrystalline
${\alpha}$ -Fe: a statistical study, Acta Mater. 110 (2016) 306-323. https://doi.org/10.1016/j.actamat.2016.03.026 - N. Ono, R. Nowak, S. Miura, Effect of deformation temperature on Hall-Petch relationship registered for polycrystalline magnesium, Mater. Lett. 58 (2004) 39-43. https://doi.org/10.1016/S0167-577X(03)00410-5
- K.L. Murty, Role and significance of source hardening in radiation embrittlement of iron and ferritic steels, J. Nucl. Mater. 270 (1999) 115-128. https://doi.org/10.1016/S0022-3115(98)00766-1
- E. Shafiei, High strain rate behavior of alloy 800H at high temperatures, J. Nucl. Mater. 473 (2016) 1-5. https://doi.org/10.1016/j.jnucmat.2016.02.005
- R.J. Kurtz, A. Alamo, E. Lucon, Q. Huang, S. Jitsukawa, A. Kimura, R.L. Klueh, G.R. Odette, C. Petersen, M.A. Sokolov, P. Spatig, J.W. Rensman, Recent progress toward development of reduced activation ferritic/martensitic steels for fusion structural applications, J. Nucl. Mater. 386-388 (2009) 411-417. https://doi.org/10.1016/j.jnucmat.2008.12.323
- N.M. Ghoniem, G. Po, S. Sharafat, Deformation mechanisms in ferritic/martensitic steels and the impact on mechanical design, J. Nucl. Mater. 441 (2013) 704-712. https://doi.org/10.1016/j.jnucmat.2013.03.045
- E.Wakai, M. Ando, T. Sawai, H. Tanigawa, T. Taguchi, R.E. Stoller, T. Yamamoto, Y. Kato, F. Takada, Effect of heat treatments on tensile properties of F82H steel irradiated by neutrons, J. Nucl. Mater. 367-370 (2007) 74-80. https://doi.org/10.1016/j.jnucmat.2007.03.164
Cited by
- Hydrogen's influence on reduced activation ferritic/martensitic steels' elastic properties: density functional theory combined with experiment vol.49, pp.8, 2017, https://doi.org/10.1016/j.net.2017.08.021
- Radiation damage in helium ion-irradiated reduced activation ferritic/martensitic steel vol.50, pp.1, 2017, https://doi.org/10.1016/j.net.2017.10.012
- Simulation of impact toughness with the effect of temperature and irradiation in steels vol.51, pp.1, 2017, https://doi.org/10.1016/j.net.2018.08.016
- Design of comprehensive mechanical properties by machine learning and high-throughput optimization algorithm in RAFM steels vol.52, pp.5, 2020, https://doi.org/10.1016/j.net.2019.10.014
- Effect of Ta and Ti on Modified Reduced Activation Ferritic/Martensitic Steels with a Thermo‐mechanical Control Process vol.92, pp.3, 2017, https://doi.org/10.1002/srin.202000477