DOI QR코드

DOI QR Code

Gamma Ray Shielding Study of Barium-Bismuth-Borosilicate Glasses as Transparent Shielding Materials using MCNP-4C Code, XCOM Program, and Available Experimental Data

  • Bagheri, Reza (Nuclear Fuel Cycle Research School (NFCRS), Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran) ;
  • Moghaddam, Alireza Khorrami (Radiology Department, Paramedical Faculty, Mazandaran University of Medical Sciences) ;
  • Yousefnia, Hassan (Nuclear Fuel Cycle Research School (NFCRS), Nuclear Science and Technology Research Institute (NSTRI), Atomic Energy Organization of Iran)
  • Received : 2016.05.04
  • Accepted : 2016.08.16
  • Published : 2017.02.25

Abstract

In this work, linear and mass attenuation coefficients, effective atomic number and electron density, mean free paths, and half value layer and $10^{th}$ value layer values of barium-bismuth-borosilicate glasses were obtained for 662 keV, 1,173 keV, and 1,332 keV gamma ray energies using MCNP-4C code and XCOM program. Then obtained data were compared with available experimental data. The MCNP-4C code and XCOM program results were in good agreement with the experimental data. Barium-bismuth-borosilicate glasses have good gamma ray shielding properties from the shielding point of view.

Keywords

References

  1. Sh Sharifi, R. Bagheri, S.P. Shirmardi, Comparison of shielding properties for ordinary, barite, serpentine and steel-magnetite concretes using MCNP-4C code and available experimental results, Ann. Nucl. Energy 53 (2013) 529-534. https://doi.org/10.1016/j.anucene.2012.09.015
  2. S.P. Shirmardi, M. Shamsaei, M. Naserpour, Comparison of photon attenuation coefficients of various barite concretes and lead by MCNP code, XCOM and experimental data, Ann. Nucl. Energy 55 (2013) 288-291. https://doi.org/10.1016/j.anucene.2013.01.002
  3. I. Akkurt, H. Akyildirim, F. Karipcin, B. Mavi, Chemical corrosion on gamma ray attenuation properties of barite concrete, J. Saud. Chem. Soc. 16 (2012) 199-202. https://doi.org/10.1016/j.jscs.2011.01.003
  4. S.R. Manohara, S.M. Hanagodimath, L. Gerward, Photon interaction and energy absorption in glass: a transparent gamma ray shield, J. Nucl. Mater. 393 (2009) 465-472. https://doi.org/10.1016/j.jnucmat.2009.07.001
  5. K.J. Singh, N. Singh, R.S. Kaundal, K. Singh, Gamma-ray shielding and structural properties of PbO-SiO2 glasses, Nucl. Instrum. Meth. B 207 (2008) 944-948.
  6. F. Bouzarjomehri, T. Bayat, M.H. Dashti, R.J. Ghisari, N. Abdoli, $^{60}Co\;{\gamma}$-ray attenuation coefficient of barite concrete, Iran. J. Radiat. Res. 4 (2006) 71-75.
  7. S.J. Stankovic, R.D. Ilic, K. Jankovic, D. Bojovic, B. Longar, Gamma radiation absorption characteristics of concrete with components of different type materials, Acta Phys. Pol. A 117 (2010) 812-816. https://doi.org/10.12693/APhysPolA.117.812
  8. I.I. Bashter, Calculation of radiation attenuation coefficients for shielding concretes, Ann. Nucl. Energy 24 (1997) 1389-1401. https://doi.org/10.1016/S0306-4549(97)00003-0
  9. M. Kurudirek, Y. Ozdemir, O. Simsek, R. Durak, Comparison of some lead and non-lead based glass systems, standard shielding concretes and commercial window glasses in terms of shielding parameters in the energy region of 1 keVe100 GeV: a comparative study, J. Nucl. Mater. 407 (2010) 110-115. https://doi.org/10.1016/j.jnucmat.2010.10.007
  10. A. Chahine, M. Et-Tabirou, J.L. Pascal, FTIR and Raman spectra of the $Na_2O-CuO-Bi_2O_3-P_2O_5$ glasses, Mater. Lett. 58 (2004) 2776-2780. https://doi.org/10.1016/j.matlet.2004.04.010
  11. K. Kirdsiri, J. Kaewkhao, N. Chanthima, P. Limsuwan, Comparative study of silicate glasses containing $Bi_2O_3$, PbO and BaO: radiation shielding and optical properties, Ann. Nucl. Energy 38 (2011) 1438-1441. https://doi.org/10.1016/j.anucene.2011.01.031
  12. A.K. Varshneya, Fundamentals of Inorganic Glasses, Academic Press, New York, 1994.
  13. J.K. Shultis, R.E. Faw, An MCNP Primer, Department of Mechanical and Nuclear Engineering, Kansas State University, 2010.
  14. J.H. Hubbell, S.M. Seltzer, Tables of X-ray Mass Attenuation Coefficients and Mass Energy-absorption Coefficients 1 keV-20 MeV for Elements 1 < Z < 92 and 48 Additional Substances of Dosimetric Interest, National Institute of Standards and Physics Laboratory, NISTIR, 1995, p. 5632.
  15. L. Gerward, N. Guilbert, K.B. Jensen, H. Levring, X-ray absorption in matter. Reengineering XCOM, Radiat. Phys. Chem. 60 (2001) 23-24. https://doi.org/10.1016/S0969-806X(00)00324-8
  16. C. Bootjomchai, J. Laopaiboon, C. Yenchai, R. Laopaiboon, Gamma-ray shielding and structural properties of barium-bismuth-borosilicate glasses, Radiat. Phys. Chem. 81 (2012) 785-790. https://doi.org/10.1016/j.radphyschem.2012.01.049
  17. N. Tsoulfanidis, S. Landsberger, Measurement and detection of radiation, fourth ed., CRC Press, Boca Raton, Florida, 2015.
  18. F. Demir, G. Budak, R. Sahin, A. Karabulut, M. Oltulu, A. Un, Determination of radiation attenuation coefficients of heavyweight- and normal-weight concretes containing colemanite and barite for 0.663 MeV ${\gamma}$-rays, Ann. Nucl. Energy 38 (2011) 1274-1278. https://doi.org/10.1016/j.anucene.2011.02.009
  19. I. Akkurt, H. Akyildirim, B. Mavi, S. Kilincarslan, C. Basyigit, Photon attenuation coefficients of concrete includes barite in different rate, Ann. Nucl. Energy 37 (2010) 910-914. https://doi.org/10.1016/j.anucene.2010.04.001
  20. A. Un, Y. Sahin, Determination of mass attenuation coefficients, effective atomic and electron numbers, mean free paths and kermas for PbO, barite and some boron ores, Nucl. Instrum. Meth. B 269 (2011) 1506-1511. https://doi.org/10.1016/j.nimb.2011.04.011
  21. K. Singh, H. Singh, G. Sharma, L. Gerward, A. Khanna, R. Kumar, R. Nathuram, H.S. Sahota, Gamma-ray shielding properties of CaO-SrO-$B_2O_3$ glasses, Radiat. Phys. Chem. 72 (2005) 225-228. https://doi.org/10.1016/j.radphyschem.2003.11.010

Cited by

  1. Determining the gamma-ray parameters for BaO-ZnO-B2O3 glasses using MCNP5 code: a comparison study vol.173, pp.5, 2017, https://doi.org/10.1080/10420150.2018.1484743
  2. The comparative studies of gamma-ray shielding properties of the PbO-BaO-B2O3 glass system by using FLUKA code to XCOM program and accessible experimental data vol.1144, pp.None, 2017, https://doi.org/10.1088/1742-6596/1144/1/012130
  3. Photon Interaction Properties of Different Bones from Human Body Using MCNPX, WinXCom, XMuDat, and Auto-Zeff Programs vol.48, pp.6, 2017, https://doi.org/10.1520/jte20180730
  4. Evaluation of radiation absorption capacity of some soil samples vol.107, pp.1, 2017, https://doi.org/10.1515/ract-2018-2996
  5. Photon and neutron shielding characteristics of samarium doped lead alumino borate glasses containing barium, lithium and zinc oxides determined at medical diagnostic energies vol.12, pp.None, 2019, https://doi.org/10.1016/j.rinp.2019.01.094
  6. Physical, structural, optical and photons attenuation attributes of lithium-magnesium-borate glasses: Role of Tm2O3 doping vol.182, pp.None, 2017, https://doi.org/10.1016/j.ijleo.2019.01.111
  7. Nano-structured natural bentonite clay coated by polyvinyl alcohol polymer for gamma rays attenuation vol.13, pp.2, 2017, https://doi.org/10.1007/s40094-019-0332-5
  8. Synthesis, physical, structural and shielding properties of newly developed B2O3-ZnO-PbO-Fe2O3 glasses using Geant4 code and WinXCOM program vol.125, pp.8, 2019, https://doi.org/10.1007/s00339-019-2831-2
  9. Development of theoretical-computational model for radiation shielding vol.13, pp.1, 2020, https://doi.org/10.1080/16878507.2020.1812798
  10. Study on gamma-ray attenuation characteristics of some amino acids for 133Ba, 137Cs, and 60Co sources vol.31, pp.2, 2020, https://doi.org/10.1007/s41365-020-0725-9
  11. Enhancement of nuclear radiation shielding and mechanical properties of YBiBO3 glasses using La2O3 vol.52, pp.6, 2017, https://doi.org/10.1016/j.net.2019.11.017
  12. Gamma-ray shielding parameters of lithium borotellurite glasses using Geant4 code vol.126, pp.7, 2017, https://doi.org/10.1007/s00339-020-03702-3
  13. Shielding design for high-intensity Co-60 and Ir-192 gamma sources used in industrial radiography based on PHITS Monte Carlo simulations vol.135, pp.10, 2017, https://doi.org/10.1140/epjp/s13360-020-00797-8
  14. Optical features and nuclear radiation shielding efficiency of ZnO-B2O3-Ta2O5 glasses vol.95, pp.10, 2017, https://doi.org/10.1088/1402-4896/abb49d
  15. Optically transparent glass modified with metal oxides for X-rays and gamma rays shielding material vol.29, pp.2, 2017, https://doi.org/10.3233/xst-200780
  16. Fabrication of TeO2-doped strontium borate glasses possessing optimum physical, structural, optical and gamma ray shielding properties vol.136, pp.4, 2021, https://doi.org/10.1140/epjp/s13360-021-01418-8
  17. A comprehensive study on novel alumino-borosilicate glass reinforced with Bi2O3 for radiation shielding applications: synthesis, spectrometer, XCOM, and MCNP-X works vol.32, pp.10, 2017, https://doi.org/10.1007/s10854-021-05964-w
  18. Detailed Inspection of γ-ray, Fast and Thermal Neutrons Shielding Competence of Calcium Oxide or Strontium Oxide Comprising Bismuth Borate Glasses vol.14, pp.9, 2017, https://doi.org/10.3390/ma14092265
  19. Gamma radiation attenuation characteristics of polyimide composite with WO2 vol.137, pp.None, 2017, https://doi.org/10.1016/j.pnucene.2021.103795
  20. Investigations on physical, structural and nuclear radiation shielding behaviour of niobium-bismuth-cadmium-zinc borate glass system vol.142, pp.None, 2017, https://doi.org/10.1016/j.pnucene.2021.104038