DOI QR코드

DOI QR Code

Removal of Strontium Ions by Immobilized Saccharomyces Cerevisiae in Magnetic Chitosan Microspheres

  • Yin, Yanan (Collaborative Innovation Center for Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University) ;
  • Wang, Jianlong (Collaborative Innovation Center for Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University) ;
  • Yang, Xiaoyong (Collaborative Innovation Center for Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University) ;
  • Li, Weihua (Collaborative Innovation Center for Advanced Nuclear Energy Technology, Institute of Nuclear and New Energy Technology, Tsinghua University)
  • Received : 2016.04.06
  • Accepted : 2016.09.08
  • Published : 2017.02.25

Abstract

A novel biosorbent, immobilized Saccharomyces cerevisiae in magnetic chitosan microspheres was prepared, characterized, and used for the removal of $Sr^{2+}$ from aqueous solution. The structure and morphology of immobilized S. cerevisiae before and after $Sr^{2+}$adsorption were observed using scanning electron microscopy with energy dispersive X-ray spectroscopy. The experimental results showed that the Langmuir and Freundlich isotherm models could be used to describe the $Sr^{2+}$ adsorption onto immobilized S. cerevisiae microspheres. The maximal adsorption capacity ($q_m$) was calculated to be 81.96 mg/g by the Langmuir model. Immobilized S. cerevisiae was an effective adsorbent for the $Sr^{2+}$ removal from aqueous solution.

Keywords

References

  1. D. Yamaguchi, K. Furukawa, M. Takasuga, K. Watanabe, A magnetic carbon sorbent for radioactive material from the Fukushima nuclear accident, Scientif Rep. 4 (2014) 6053.
  2. R. Yavari, D. Huang, A. Mostofizadeh, Sorption of strontium ions from aqueous solutions by oxidized multiwall carbon nanotubes, J. Radioanal. Nucl. Chem. 285 (2010) 703-710. https://doi.org/10.1007/s10967-010-0600-y
  3. Y.J. Park, Y.C. Lee, W.S. Shin, S.J. Choi, Removal of cobalt, strontium and cesium from radioactive laundry wastewater by ammonium molybdophosphate- polyacrylonitrile (AMP-PAN), Chem. Eng. J. 162 (2010) 685-695. https://doi.org/10.1016/j.cej.2010.06.026
  4. Y.W. Chen, J.L. Wang, The characteristics and mechanism of Co(II) removal from aqueous solution by a novel xanthate-modified magnetic chitosan, Nucl. Eng. Des. 242 (2012) 452-457. https://doi.org/10.1016/j.nucengdes.2011.11.004
  5. J.L. Wang, C. Chen, Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides, Bioresourc. Technol. 160 (2014) 129-141. https://doi.org/10.1016/j.biortech.2013.12.110
  6. M. Galamvos, J. Kufcakova, P. Rajec, Sorption of strontiumon Slovak bentonites, J. Radioanal. Nucl. Chem. 281 (2009) 347-357. https://doi.org/10.1007/s10967-009-0017-7
  7. N.J. Coleman, D.S. Brassington, A. Raza, A.P. Mendham, Sorption of $Co^{2+}$ and $Sr^{2+}$ by waste-derived $11{\AA}$ tobermorite, Waste Mange. 26 (2006) 260-267. https://doi.org/10.1016/j.wasman.2005.01.019
  8. S. Dimovic, I. Smiciklas, I. Plecas, D. Autonovic, Kinetic study of $Sr^{2+}$ sorption by bone char, Sep. Sci.Technol. 44 (2009) 645-667. https://doi.org/10.1080/01496390802634307
  9. N.H.M. Kamel, Adsorption models of $^{137}Cs$ radionuclide and Sr(II) on some Egyptian soils, J. Environ. Radioact. 101 (2010) 297-303. https://doi.org/10.1016/j.jenvrad.2010.01.001
  10. G.M. Gadd, Interactions of fungi with toxic metals, New Phytol. 124 (1993) 25-60. https://doi.org/10.1111/j.1469-8137.1993.tb03796.x
  11. J.L. Wang, C. Chen, Biosorption of heavy metals by Saccharomyces cerevisiae: a review, Biotechnol. Adv. 24 (2006) 427-451. https://doi.org/10.1016/j.biotechadv.2006.03.001
  12. J.L. Wang, C. Chen, Biosorbents for heavy metals removal and their future, Biotechnol. Adv. 27 (2009) 195-226. https://doi.org/10.1016/j.biotechadv.2008.11.002
  13. L.M. Zhou, J.P. Xu, X.Z. Liang, Z.R. Liu, Adsorption of platinum(IV) and palladium(II) from aqueous solution by magnetic cross-linking chitosan nanoparticles modified with ethylenediamine, J. Hazard. Mater. 182 (2010) 518-524. https://doi.org/10.1016/j.jhazmat.2010.06.062
  14. Y.W. Chen, J.L. Wang, Preparation and characterization of magnetic chitosan nanoparticles and its application for Cu (II) removal, Chem. Eng. J. 168 (2010) 286-292.
  15. Y.H. Zhu, J. Hu, J.L. Wang, Removal of $Co^{2+}$ from radioactive wastewater by polyvinyl alcohol (PVA)/chitosan magnetic composite, Prog. Nucl. Energ. 71 (2014) 172-178. https://doi.org/10.1016/j.pnucene.2013.12.005
  16. E. Repo, J.K. Warchol, T.A. Kurniawan, M.E.T. Silanpaa, Adsorption of Co(II) and Ni(II) by EDTA-and /or DTPA-modified chitosan: kinetic and equilibrium modeling, Chem. Eng. J. 161 (2010) 73-82. https://doi.org/10.1016/j.cej.2010.04.030
  17. Y.W. Chen, J.L. Wang, Removal of radionuclide $Sr^{2+}$ ions from aqueous solution using synthesized magnetic chitosan beads, Nucl. Eng. Des. 242 (2010) 445-451.
  18. P.E. Podzus, M.E. Daraio, S.E. Jacobo, Chitosan magnetic microspheres for the technological applications: preparation and characterization, Physica. B. 404 (2009) 2710-2718. https://doi.org/10.1016/j.physb.2009.06.093
  19. J.L. Wang, Microbial Immobilization Techniques and Water Pollution Control, Science Press, Beijing, 2002.
  20. C. Chen, J.L. Wang, Removal of $Pb^{2+}$, $Ag^+$, $Cs^+$, $Sr^{2+}$ from aqueous solution by brewery's waste biomass, J. Hazard. Mater. 151 (2008) 65-70. https://doi.org/10.1016/j.jhazmat.2007.05.046
  21. A. Naeem, J.R. Woertz, J.B. Fein, Experimental measurement of proton, Cd, Pb, Sr, and Zn adsorption onto the fungal species Saccharomyces cerevisiae, Environ. Sci. Technol. 40 (2006) 5724-5729. https://doi.org/10.1021/es0606935
  22. Q.Q. Peng, Y.G. Liu, G.M. Zeng, W.H. Xu, C.P. Yang, J.J. Zhang, Biosorption of copper(II) by immobilizing Saccharomyces cerevisiae on the surface of chitosan-coated magnetic nanoparticles from aqueous solution, J. Hazard. Mater. 177 (2010) 676-682. https://doi.org/10.1016/j.jhazmat.2009.12.084
  23. J.B. Fein, A.M. Martin, P.G. Wightman, Metal adsorption onto bacterial surfaces: development of a predictive approach, Geochim. Cosmochim Acta. 65 (2001) 4267-4273. https://doi.org/10.1016/S0016-7037(01)00721-9
  24. J.B. Fein, C.J. Daughney, N. Yee, T.A. Davis, A chemical equilibrium model for metal adsorption onto bacterial surfaces, Geochim, Cosmochim Acta. 61 (1997) 3319-3328. https://doi.org/10.1016/S0016-7037(97)00166-X
  25. D.M. Borrok, J.B. Fein, The impact of ionic strength on the adsorption of protons, Pb, Cd, and Sr onto the surfaces of Gram negative bacteria: testing non-electro static, diffuse, and triple-layer models, J. Colloid Interface Sci. 286 (2005) 110-126. https://doi.org/10.1016/j.jcis.2005.01.015
  26. J.L. Wang, Biosorption of copper(II) by chemically modified biomass of Saccharomyces cerevisiae, Process Biochem. 37 (2002) 847-850. https://doi.org/10.1016/S0032-9592(01)00284-9
  27. V.D. Maria, S.D. Ecaterina, Evaluation of $Cu^{2+}$, $Co^{2+}$ and $Ni^{2+}$ ions removal from aqueous solution using a novel chitosan/clinoptilolite composite: kinetics and isotherms, Chem. Eng. J. 160 (2010) 157-163. https://doi.org/10.1016/j.cej.2010.03.029
  28. J.M. Smith, Chemical Engineering Kinetics, third ed., McGraw-Hill, Singapore, 1981.
  29. G.N. Kousalya, M.R. Gandhi, N. Viswanathan, V. Meenakshi, Preparation and metal uptake studies of modified forms of chitin, Int. J. Biol. Macromol. 47 (2010) 583-589. https://doi.org/10.1016/j.ijbiomac.2010.07.014
  30. B. Ma, S. Oh, W.S. Shin, S.J. Choi, Removal of $Co^{2+}$, $Sr^{2+}$ and $Cs^+$ from aqueous solution by phosphate-modified montmorillonite (PMM), Desalination 276 (2011) 336-346. https://doi.org/10.1016/j.desal.2011.03.072
  31. W. Guan, J.M. Pan, H.X. Ou, X. Wang, X.H. Zou, W. Hu, C.X. Li, X.Y. Wu, Removal of strontium(II) ions by potassium tetratitanate whisker and sodium trititanate whisker from aqueous solution: Equilibrium, kinetics and thermodynamics, Chem. Eng. J. 167 (2011) 215-222. https://doi.org/10.1016/j.cej.2010.12.025

Cited by

  1. Removal of various pollutants from water and wastewater by modified chitosan adsorbents vol.47, pp.23, 2017, https://doi.org/10.1080/10643389.2017.1421845
  2. Biosorption of strontium ions from aqueous solution using modified eggshell materials vol.105, pp.12, 2017, https://doi.org/10.1515/ract-2016-2729
  3. Treatment of Radioactive Wastewater from High-Temperature Gas-Cooled Reactor by Membrane System vol.203, pp.1, 2017, https://doi.org/10.1080/00295450.2018.1432838
  4. Removal of cobalt ion from aqueous solution using magnetic graphene oxide/chitosan composite vol.38, pp.suppl1, 2019, https://doi.org/10.1002/ep.12912
  5. Algal sorbent derived from Sargassum horneri for adsorption of cesium and strontium ions: equilibrium, kinetics, and mass transfer vol.103, pp.6, 2019, https://doi.org/10.1007/s00253-019-09619-z
  6. Characterization and Adsorption Behavior of Strontium from Aqueous Solutions onto Chitosan-Fuller’s Earth Beads vol.7, pp.1, 2017, https://doi.org/10.3390/healthcare7010052
  7. Removal of cesium ions from aqueous solutions using various separation technologies vol.18, pp.2, 2019, https://doi.org/10.1007/s11157-019-09499-9
  8. In vitro release and antioxidative potential of Pequi oil-based biopolymers (Caryocar brasiliense Cambess) vol.26, pp.8, 2017, https://doi.org/10.1007/s10965-019-1836-z
  9. Application of tracer technique in remediation of Sr(II) from simulated low level radioactive waste vol.322, pp.1, 2017, https://doi.org/10.1007/s10967-019-06514-9
  10. Adsorptive removal of strontium ions from aqueous solution by graphene oxide vol.26, pp.29, 2019, https://doi.org/10.1007/s11356-019-06149-z
  11. Immobilized microbial nanoparticles for biosorption vol.40, pp.5, 2017, https://doi.org/10.1080/07388551.2020.1751583
  12. Biosorptive removal of cobalt(II) from aqueous solutions using magnetic cyanoethyl chitosan beads vol.8, pp.6, 2020, https://doi.org/10.1016/j.jece.2020.104531
  13. Understanding the holistic approach to plant-microbe remediation technologies for removing heavy metals and radionuclides from soil vol.3, pp.None, 2021, https://doi.org/10.1016/j.crbiot.2021.02.004
  14. Adsorptive removal of Sr(II) from aqueous solution by polyvinyl alcohol/graphene oxide aerogel vol.278, pp.None, 2017, https://doi.org/10.1016/j.chemosphere.2021.130492
  15. Removal of Cesium from Radioactive Waste Liquids Using Geomaterials vol.11, pp.18, 2017, https://doi.org/10.3390/app11188407
  16. Polysaccharides as Support for Microbial Biomass-Based Adsorbents with Applications in Removal of Heavy Metals and Dyes vol.13, pp.17, 2017, https://doi.org/10.3390/polym13172893
  17. One-step solid-state fermentation for efficient erythritol production from the simultaneous saccharified crop wastes by incorporating immobilized cellulase vol.176, pp.None, 2017, https://doi.org/10.1016/j.indcrop.2021.114351