DOI QR코드

DOI QR Code

Numerical Study on Coolant Flow Distribution at the Core Inlet for an Integral Pressurized Water Reactor

  • Sun, Lin (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University) ;
  • Peng, Minjun (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University) ;
  • Xia, Genglei (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University) ;
  • Lv, Xing (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University) ;
  • Li, Ren (Fundamental Science on Nuclear Safety and Simulation Technology Laboratory, Harbin Engineering University)
  • Received : 2016.01.06
  • Accepted : 2016.07.16
  • Published : 2017.02.25

Abstract

When an integral pressurized water reactor is operated under low power conditions, once-through steam generator group operation strategy is applied. However, group operation strategy will cause nonuniform coolant flow distribution at the core inlet and lower plenum. To help coolant flow mix more uniformly, a flow mixing chamber (FMC) has been designed. In this paper, computational fluid dynamics methods have been used to investigate the coolant distribution by the effect of FMC. Velocity and temperature characteristics under different low power conditions and optimized FMC configuration have been analyzed. The results illustrate that the FMC can help improve the nonuniform coolant temperature distribution at the core inlet effectively; at the same time, the FMC will induce more resistance in the downcomer and lower plenum.

Keywords

References

  1. S.U. Khan, M.J. Peng, Neutronics and thermal hydraulic coupling analysis of integrated pressurized water reactor, Int. J. Energy Res 37 (2013) 1709-1717. https://doi.org/10.1002/er.2981
  2. G.L. Xia, M.J. Peng, X. Du, Analysis of load-following characteristics for an integrated pressurized water reactor, Int. J. Energy Res 38 (2014) 380-390. https://doi.org/10.1002/er.3053
  3. W.Q. Xu, M.J. Peng, Research on ideal steady-state programming control strategy of integral PWR, Chin. J. Nucl. Sci. Eng 30 (2010) 1-8.
  4. L. Sun, M. Peng, G. Xia, Study on natural circulation and its transition process for IP200, Trans. Am. Nucl. Soc 111 (2014) 1467-1470.
  5. Y. Bae, Y.I. Kim, C.T. Park, CFD analysis of flow distribution at the core inlet of SMART, Nucl. Eng. Des 258 (2013) 19-25. https://doi.org/10.1016/j.nucengdes.2013.02.003
  6. M.F. Robbe, M. Lepareux, E. Treille, Y. Cariou, Numerical simulation of a hypothetical core disruptive accident in a small-scale model of a nuclear reactor, Nucl. Eng. Des 223 (2003) 159-196. https://doi.org/10.1016/S0029-5493(03)00039-6
  7. J.H. Jeong, B.S. Han, Coolant flow field in a real geometry of PWR downcomer and lower plenum, Ann. Nucl. Energy 35 (2008) 610-619. https://doi.org/10.1016/j.anucene.2007.08.010
  8. K.M. Kim, B.I. Lee, H.H. Cho, J.S. Park, Y.J. Chung, Numerical study on thermo-hydrodynamics in the reactor internals of SMART, Nucl. Eng. Des 241 (2011) 2536-2543. https://doi.org/10.1016/j.nucengdes.2011.04.032
  9. Y.I. Kim, Y. Bae, Y.J. Chung, K.K. Kim, CFD simulation for thermal mixing of a SMART flow mixing header assembly, Ann. Nucl. Energy 85 (2015) 357-370. https://doi.org/10.1016/j.anucene.2015.05.019
  10. B.H. Yan, G. Zhang, H.Y. Gu, CFD analysis of the effect of rolling motion on the flow distribution at the core inlet, Ann. Nucl. Energy 41 (2012) 17-25. https://doi.org/10.1016/j.anucene.2011.11.004
  11. S. Lim, Y. Choi, K. Ha, K. Park, N. Park, Y. Park, K. Jeong, J. Park, Dynamic characteristics of a perforated cylindrical shell for flow distribution in SMART, Nucl. Eng. Des 241 (2011) 4079-4088. https://doi.org/10.1016/j.nucengdes.2011.08.029
  12. K. Min, B. In, D. Lee, H. Hee, K. Hoon, Experimental and numerical study on local pressure distributions in a system-integrated modular reactor, Ann. Nucl. Energy 47 (2012) 216-224. https://doi.org/10.1016/j.anucene.2012.05.002
  13. H.K. Versteeg, W. Malalasekera, An Introduction to Computational Fluid Dynamics: The Finite Volume Method, second ed., Pearson, London, 2007.
  14. ANSYS Inc, FLUENT 15.0 user's guide, 2013.
  15. P.J. Roache, Perspective: a method for uniform reporting of grid refinement studies, J. Fluids Eng 116 (1994) 405-413. https://doi.org/10.1115/1.2910291
  16. F. Menter, B. Hemstrom, M. Henriksson, R. Karlsson, A. Latrobe, P. Muhlbauer, M. Scheuerer, B. Smith, T. Takacs, S. Willemsen, ECORA Contract No. FIKS-CT-2001-00154 CFD best practice guidelines for CFD code validation for reactor safety applications, 2002, 1-46.
  17. U. Rohde, T. Hohne, S. Kliem, B. Hemstrom, M. Scheuerer, T. Toppila, A. Aszodi, I. Boros, I. Farkas, P. Muhlbauer, L. Vyskocil, J. Klepac, J. Remis, T. Dury, Fluid mixing and flow distribution in a primary circuit of a nuclear pressurized water reactor-validation of CFD codes, Nucl. Eng. Des 237 (2007) 1639-1655. https://doi.org/10.1016/j.nucengdes.2007.03.015
  18. G.L. Xia, Analysis of the Impact of OTSG Grouping Run on Reactor Core Thermal-hydraulic Characteristics, D. Eng. Dissertation, Harbin Engineering University, 2014.
  19. G.L. Xia, G.H. Su, M.J. Peng, Analysis of flow distribution in plate-type core affected by uneven inlet temperature distribution, Ann. Nucl. Energy 92 (2016) 333-344. https://doi.org/10.1016/j.anucene.2016.01.044
  20. M. Andreani, A. Takacs, A. Latrobe, J. Lillington, S. Assurance, Evaluation of Computational Fluid Dynamic Methods for Reactor Safety Analysis Contract FIKS-CT-2001-00154 Review of CFD Applications in Primary Loop and Recommendations FZR, Germany, 2003.
  21. D. Bestion, M. Scheuerer, Recommendation on Use of CFD Codes for Nuclear Reactor Safety Analysis Contribution, 2002.
  22. M. Scheuerer, M. Heitsch, F. Menter, Y. Egorov, I. Toth, D. Bestion, S. Pigny, H. Paillere, A. Martin, M. Boucker, E. Krepper, S. Willemsen, P. Muhlbauer, M. Andreani, B. Smith, R. Karlsson, M. Henriksson, B. Hemstrom, I. Karppinen, G. Kimber, Evaluation of computational fluid dynamic methods for reactor safety analysis (ECORA), Nucl. Eng. Des 235 (2005) 359-368. https://doi.org/10.1016/j.nucengdes.2004.08.049

Cited by

  1. Numerical simulation and experimental research on CHF characteristics of AP1000 nuclear reactor vol.55, pp.12, 2017, https://doi.org/10.1080/00223131.2018.1512426
  2. The Trimming-Based Design Method for PWR Coolant Flow Distribution Device vol.2019, pp.None, 2017, https://doi.org/10.1155/2019/6043286
  3. Coupling simulation of neutron kinetics core model with CFD of IPWR steam line break accident vol.84, pp.3, 2017, https://doi.org/10.3139/124.110979
  4. Research on optimization design of PWR flow distribution device based on numerical simulation vol.57, pp.9, 2017, https://doi.org/10.1080/00223131.2020.1758228
  5. Assessment of Realistic Departure from Nucleate Boiling Ratio (DNBR) Considering Uncertainty Quantification of Core Flow Asymmetry vol.14, pp.5, 2021, https://doi.org/10.3390/en14051504
  6. An Experimental Study into the Hydrodynamics of the Loop Coolant Flows’ Mixing in the Nuclear Reactor Downcomer vol.68, pp.4, 2017, https://doi.org/10.1134/s0040601521030010