DOI QR코드

DOI QR Code

Application of CR-39 Microfilm for Rapid Discrimination Between Alpha-Particle Sources

  • Dwaikat, Nidal (Department of Physics, King Fahd University of Petroleum & Minerals) ;
  • Al-Karmi, Anan M. (Department of Physics, King Fahd University of Petroleum & Minerals)
  • Received : 2016.08.24
  • Accepted : 2016.12.05
  • Published : 2017.08.25

Abstract

This work presents a new technique for discriminating between alpha particles of different energy levels. In a first study, two groups of alpha particles emitted from radium-226 and americium-241 sources were successfully separated using a CR-39 microfilm of appropriate thickness. This thickness was adjusted by chemical etching before and after irradiation so that lower-energy particles were stopped within the detector, while higher-energy particles were revealed on the back side of the detector. The number of tracks on the front side of the microfilm represented all alpha particles incident on that side from the two sources. However, the number of tracks on the back side of the microfilm represented only the long-range alpha particles of higher energy that arrived at that side. Therefore, by subtracting the number of tracks on the back side from the number of tracks on the front side, one could easily determine the number of tracks for the short-range alpha particles of lower energy that remained embedded in the microfilm. Discrimination of the two energy levels is thus achieved in a simple, fast, and reliable process.

Keywords

References

  1. D. Zhou, D. O'Sullivan, E. Semones, M. Weyland, Charge spectra of cosmic ray nuclei measured with CR-39 detectors in low earth orbit, Nucl. Instrum. Methods Phys. Res. A 564 (2006) 262-266. https://doi.org/10.1016/j.nima.2006.05.044
  2. S. Kodaira, T. Doke, M. Hareyama, N. Hasebe, S. Ota, K. Sakurai, M. Sato, N. Yasuda, S. Nakamura, T. Kamei, H. Tawara, K. Ogura, Development of high resolution solidstate track detector for ultra heavy cosmic ray observation, Proceedings of the 30th International Cosmic Ray Conference, Mexico City, Mexico, OG part 1, Volume 2, 2008, pp. 425-428.
  3. C. Zhao, W. Zhuo, D. Fan, Y. Yi, B. Chen, Effects of atmospheric parameters on radon measurements using alpha-track detectors, Rev. Sci. Instrum. 85 (2014), 022101/1-5.
  4. M. Janik, T. Ishikawa, Y. Omori, N. Kavasi, Radon and thoron intercomparison experiments for integrated monitors at NIRS, Japan, Rev. Sci. Instrum. 85 (2014), 022001/1-22.
  5. A. Ulug, M. Tuncay Karabulut, N. Celebi, Radon measurements with CR-39 track detectors at specific locations in turkey, Nucl. Tech. Radiat. Prot. 19 (2004) 46-49. https://doi.org/10.2298/NTRP0401046U
  6. M.A. Rana, G. Sher, S. Manzoor, F. Malik, K. Naz, Nuclear track detectors for relativistic nuclear fragmentation studies: comparison with other competitive techniques, Mod. Instrum. 2 (2013) 49-59.
  7. M.J.E. Manuel, M.J. Rosenberg, N. Sinenian, H. Rinderknecht, A.B. Zylstra, F.H. Seguin, J. Frenje, C.K. Li, R.D. Petrasso, Changes in CR-39 proton sensitivity due to prolonged exposure to high vacuums relevant to the national ignition facility and OMEGA, Rev. Sci. Instrum. 82 (2011), 095110/1-8.
  8. S. Kodaira, M. Kurano, T. Hosogane, F. Ishikawa, T. Kageyama, M. Sato, M. Kayano, N. Yasuda, Application of CR-39 plastic nuclear track detectors for quality assurance of mixed oxide fuel pellets, Rev. Sci. Instrum. 86 (2015), 056103/1-3.
  9. C.J.Waugh, M.J. Rosenberg, A.B. Zylstra, J.A. Frenje, F.H. Seguin, R.D. Petrasso, V.Y. Glebov, T.C. Sangster, C. Stoeckl, A method for in situ absolute DD yield calibration of neutron time-of-flight detectors on OMEGA using CR-39-based proton detectors, Rev. Sci. Instrum. 86 (2015), 053506/1-6.
  10. C. Baccou, V. Yahia, S. Depierreux, C. Neuville, C. Goyon, F. Consoli, R. De Angelis, J.E. Ducret, G. Boutoux, J. Rafelski, C. Labaune, CR-39 track detector calibration for H, He, and C ions from 0.1-0.5 MeV up to 5 MeV for laser-induced nuclear fusion product identification, Rev. Sci. Instrum. 86 (2015), 083307/1-8.
  11. G.S. Sahoo, S.P. Tripathy, S. Paul, S.C. Sharma, D.S. Joshi, A.K. Gupta, T. Bandyopadhyay, Effects of high neutron doses and duration of the chemical etching on the optical properties of CR-39, Appl. Radiat. Isot. 101 (2015) 114-121. https://doi.org/10.1016/j.apradiso.2015.04.002
  12. S. Cavallaro, Fast neutron efficiency in CR-39 nuclear track detectors, Rev. Sci. Instrum. 86 (2015), 036103/1-3.
  13. T. McLing, M. Carpenter, W. Brandon, B. Zavala, Testing novel CR-39 detector deployment system for identification of subsurface fractures, Soda Springs, Idaho, Idaho National Laboratory, Idaho Falls, Idaho, 2015.
  14. M. El Ghazaly, H.E. Hassan, Spectroscopic studies on alpha particle-irradiated PADC (CR-39 detector), Results Phys. 4 (2014) 40-43. https://doi.org/10.1016/j.rinp.2014.04.001
  15. J.F. Ziegler [Internet]. SRIM-the stopping and range of ions in matter, (2013) [retrieved 2015 Sep 6]. Available from: http://www.srim.org/.
  16. S.A. Durrani, R.K. Bull, Solid State Nuclear Track Detection: Principles, Methods and Applications, Pergamon Press, Oxford, 1987.
  17. E.M. Awad, A.A. Soliman, Y.S. Rammah, Alpha particle spectroscopy for CR-39 detector utilizing matrix of energy equations, Phys. Lett. A 369 (2007) 359-366. https://doi.org/10.1016/j.physleta.2007.05.011
  18. E.M. Awad, A.A. Soliman, H.M. El-Samman, W.M. Arafae, Y.S. Rammah, Alpha spectroscopy in CR-39 SSNTDs using energy simulation and matrix of energy equations for open field studies, Phys. Lett. A 372 (2008) 2959-2966. https://doi.org/10.1016/j.physleta.2008.01.022
  19. G. Imme, D. Morelli, M. Aranzulla, R. Catalano, G. Mangano, Nuclear track detector characterization for alpha-particle spectroscopy, Radiat. Meas. 50 (2013) 253-257. https://doi.org/10.1016/j.radmeas.2012.03.014
  20. N. Sinenian, M.J. Rosenberg, M. Manuel, S.C. McDuffee, D.T. Casey, A.B. Zylstra, H.G. Rinderknecht, M. Gatu Johnson, F.H. Seguin, J.A. Frenje, C.K. Li, R.D. Petrasso, The response of CR-39 nuclear track detector to 1-9 MeV protons, Rev. Sci. Instrum. 82 (2011), 103303/1-7.
  21. P. Le Thanh, A. Chambaudet, C. Vuillemier, A method of determining the average energy of radon and daughter alpha particles using two passive detectors: CR-39 nuclear track detector and LiF thermoluminescent detector, Nucl. Tracks Radiat. Meas. 15 (1988) 543-546. https://doi.org/10.1016/1359-0189(88)90198-7
  22. N. Dwaikat, M. El-Hasan, M. Sueyasu, W. Kada, F. Sato, Y. Kato, G. Saffarini, T. Iida, A fast method for the determination of the efficiency coefficient of bare CR-39 detector, Nucl. Instrum. Methods Phys. Res. B 268 (2010) 3351-3355. https://doi.org/10.1016/j.nimb.2010.06.038
  23. T. Yamauchi, R. Barillon, E. Balanzat, T. Asuka, K. Izumi, T. Masutani, K. Oda, Yields of $CO_2$ formation and scissions at ether bonds along nuclear tracks in CR-39, Radiat. Meas. 40 (2005) 224-228. https://doi.org/10.1016/j.radmeas.2005.05.013

Cited by

  1. Radon and thoron concentrations inside ancient Egyptian tombs at Saqqara region: Time-resolved and seasonal variation measurements vol.50, pp.6, 2017, https://doi.org/10.1016/j.net.2018.03.017
  2. The impact on alpha emission rates of varying distances between a CR-39 detector and alpha-emitting bone samples vol.5, pp.4, 2021, https://doi.org/10.1007/s41605-021-00291-4