DOI QR코드

DOI QR Code

γ-Ray Shielding Behaviors of Some Nuclear Engineering Materials

  • 투고 : 2016.01.31
  • 심사 : 2016.12.05
  • 발행 : 2017.08.25

초록

The essential requirement of a material to be used for engineering purposes at nuclear establishments is its ability to attenuate the most penetrating ionizing radiations, gamma $({\gamma})-rays$. Mostly, high-Z materials such as heavy concrete, lead, mercury, and their mixtures or alloys have been used in the construction of nuclear establishments and thus termed as nuclear engineering materials (NEM). The NEM are classified into two categories, namely opaque and transparent, depending on their behavior towards the visible spectrum of EM waves. The majority of NEM are opaque. By contrast, various types of glass, which are transparent to visible light, are necessary at certain places in the nuclear establishments. In the present study, ${\gamma}-ray$ shielding behaviors (GSB) of six glass samples (transparent NEM) were evaluated and compared with some opaque NEM in a wide range of energy (15 keV-15 MeV) and optical thickness (OT). The study was performed by computing various ${\gamma}-ray$ shielding parameters (GSP) such as the mass attenuation coefficient, equivalent atomic number, and buildup factor. A self-designed and validated computer-program, the buildup factor-tool, was used for various computations. It has been established that some glass samples show good GSB, thus can safely be used in the construction of nuclear establishments in conjunction with the opaque NEM as well.

키워드

참고문헌

  1. H. Singh, K. Singh, L. Gerward, H.S. Sahota, R. Nathuram, ZnO-PbO-B2O3 glasses as gamma-ray shielding materials, Nucl. Instrum. Methods Phys. Res. B 207 (2003) 257-262. https://doi.org/10.1016/S0168-583X(03)00462-2
  2. M.F. Chen, R.E. Faw, Build-up factors for high energy gamma rays normally incident on slabs of lead, iron, concrete and water, Radiat. Prot. Dosim. 50 (1993) 31-37.
  3. K.J. Singh, N. Singh, R.S. Kaundal, K. Singh, Gamma-ray shielding and structural properties of PbO-SiO2 glasses, Nucl. Instrum. Methods Phys. Res. B 266 (2008) 944-948. https://doi.org/10.1016/j.nimb.2008.02.004
  4. S. Singh, S.S. Ghumman, C. Singh, K.S. Thind, G.S. Mudahar, Buildup of gamma ray photons in flyash concretes: a study, Ann. Nucl. Energy 37 (2010) 681-684. https://doi.org/10.1016/j.anucene.2010.02.006
  5. S.R. Manohara, S.M. Hanagodimath, L. Gerward, Energy absorption buildup factors for thermoluminescent dosimetric materials and their tissue equivalence, Radiat. Phys. Chem. 79 (2010) 575-582. https://doi.org/10.1016/j.radphyschem.2010.01.002
  6. M. Kurudirek, B. Dogan, Y. Ozdemir, L.A.C. Moreira, C.R. Appoloni, Analysis of some Earth, Moon and Mars samples in terms of gamma ray energy absorption buildup factors: penetration depth, weight fraction of constituent elements and photon energy dependence, Radiat. Phys. Chem. 80 (2011) 354-364. https://doi.org/10.1016/j.radphyschem.2010.10.001
  7. K.S. Mann, G.S. Sidhu, Verification of some low-Z silicates as gamma-ray shielding materials, Ann. Nucl. Energy 40 (2012) 241-252. https://doi.org/10.1016/j.anucene.2011.09.015
  8. K.S. Mann, T. Korkut, Gamma-ray buildup factors study for deep penetration in some silicates, Ann. Nucl. Energy 51 (2013) 81-93. https://doi.org/10.1016/j.anucene.2012.08.024
  9. Y. Harima, An approximation of gamma-ray buildup factors by modified geometrical progression, Nucl. Sci. Eng. 83 (1983) 299-309. https://doi.org/10.13182/NSE83-A18222
  10. M.J. Maron, Numerical Analysis: A Practical Approach, Second ed., Macmillan, New York, 1987. ISBN: 13.9780023762109.
  11. Y. Harima, Y. Sakamoto, S. Tanaka, M. Kawai, Validity of the geometric-progression formula in approximating gamma-ray buildup factors, Nucl. Sci. Eng. 94 (1986) 24-35. https://doi.org/10.13182/NSE86-A17113
  12. A. Shimizu, K. Aoki, Application of Invariant Embedding to Reactor Physics, Academic Press, New York, 1972.
  13. A. Shimizu, T. Onda, Y. Sakamoto, Calculations of gamma ray buildup factors up to depths of 100 mfp by the method of invariant embedding, (III) generation of an improved data set, J. Nucl. Sci. Technol. 41 (2004) 413-424. https://doi.org/10.1080/18811248.2004.9715503
  14. C. Suteau, M. Chiron, An iterative method for calculating gamma-ray build-up factors in multi-layer shields, Radiat. Prot. Dosim. 116 (2005) 489-492. https://doi.org/10.1093/rpd/nci192
  15. W.R. Nelson, H. Hirayama, D.W.O. Rogers, The EGS4 Code System, Stanford Linear Accelerator Center Report SLAC-265 (Stanford Calif), 1985.
  16. Y. Sakamoto, D.K. Trubey, Radiation safety information computation center data package DLC-129/ANS643, Geometric Prog. Gamma-Ray Buildup Factor Coefficients, 1991.
  17. Y. Harima, S. Tanaka, Y. Sakamoto, H. Hirayama, Development of new gamma-ray buildup factor and application to shielding calculations, J. Nucl. Sci. Technol. 28 (1991) 74-84. https://doi.org/10.1080/18811248.1991.9731324
  18. M.B. Chadwick, P. Oblozinsky, M. Herman, N.M. Greene, R.D. McKnight, D.L. Smith, P.G. Young, R.E. MacFarlane, G.M. Hale, S.C. Frankle, A.C. Kahler, T. Kawano, R.C. Little, D.G. Madland, P. Moller, R.D. Mosteller, P.R. Page, P. Talou, H. Trellue, M.C. White, W.B. Wilson, R. Arcilla, C.L. Dunford, S.F. Mughabghab, B. Pritychenko, D. Rochman, A.A. Sonzogni, C.R. Lubitz, T.H. Trumbull, J.P. Weinman, D.A. Brown, D.E. Cullen, D.P. Heinrichs, D.P. McNabb, H. Derrien, M.E. Dunn, N.M. Larson, L.C. Leal, A.D. Carlson, R.C. Block, J.B. Briggs, E.T. Cheng10, H.C. Huria, M.L. Zerkle, K.S. Kozier, A. Courcelle, V. Pronyaev, S.C. van der Marck, ENDF/B-VII.0: Next generation evaluated nuclear data library for nuclear science and technology, Nucl. Data Sheets 107 (2006) 2931-3060. https://doi.org/10.1016/j.nds.2006.11.001
  19. J.C. Ryman, F.A. Alpan, L.A. Durani, K.F. Eckerman, R.E. Faw, L. Ruggieri, C.E. Sanders, X.G. Xu, Revision of ANSI/ANS-6.4.3, Trans. Am. Nucl. Soc. 99 (2008) 613-614.
  20. L.P. Ruggieri, C.E. Sanders, Update to ANSI/ANS-6.4.3. 1991 gamma ray buildup factors for high Z engineering materials (Part I), Trans. Am. Nucl. Soc. 99 (2008) 618-620.
  21. G.S. Bhandal, K. Singh, Study of the mass attenuation coefficients and effective atomic numbers in some multi element materials, Appl. Radiat. Isot. 44 (1993) 929-939. https://doi.org/10.1016/0969-8043(93)90048-F
  22. H.S. Katz, J.V. Milewski, Handbook of Fillers for Plastics, Van Nostrand Reinhold, New York, 1987, ISBN 978-0-442-26024-8.
  23. NIST[Internet]. 2001 [cited 24th October, 2016]. Available from: www.ceramics.nist.gov/webbook/webook.htm.
  24. K.S. Mann, M.S. Heer, A. Rani, Gamma-ray double-layered transmission exposure buildup factors of some engineering materials, a comparative study, Radiat. Phys. Chem. 125 (2016) 27-40. https://doi.org/10.1016/j.radphyschem.2016.03.001
  25. J.H. Hubbell, S.M. Seltzer, Tables of X-ray Mass Attenuation Coefficients and Mass Energy Absorption Coefficients 1 keV to 20 MeV for Elements Z = 1 to 92 and 48 Additional Substances of Dosimetric Interest, NISTIR-5632, Gaithersburg, MD, 2004.
  26. G.S. Sidhu, P.S. Singh, G.S. Mudahar, Energy absorption buildup factor studies in biological samples, Radiat. Prot. Dosim. 86 (1999) 207-216. https://doi.org/10.1093/oxfordjournals.rpd.a032944

피인용 문헌

  1. Investigation of some nuclear engineering materials in terms of gamma ray buildup factors at experimental energies used in nuclear physics experiments vol.175, pp.7, 2017, https://doi.org/10.1080/10420150.2020.1737694
  2. Shielding design for high-intensity Co-60 and Ir-192 gamma sources used in industrial radiography based on PHITS Monte Carlo simulations vol.135, pp.10, 2017, https://doi.org/10.1140/epjp/s13360-020-00797-8
  3. The effect of Nb2O5 on waste soda‐lime glass in gamma‐rays shielding applications vol.32, pp.4, 2017, https://doi.org/10.1007/s10854-020-05230-5
  4. Newly Developed Vanadium-Based Glasses and Their Potential for Nuclear Radiation Shielding Aims: A Monte Carlo Study on Gamma Ray Attenuation Parameters vol.14, pp.14, 2017, https://doi.org/10.3390/ma14143897
  5. A Closer Look on Nuclear Radiation Shielding Properties of Eu3+ Doped Heavy Metal Oxide Glasses: Impact of Al2O3/PbO Substitution vol.14, pp.18, 2017, https://doi.org/10.3390/ma14185334
  6. Evaluation of three different glassy composites (quinary matrix designed using Cr2O3/Na2O/MnO2) in respect of radiation shielding behaviors vol.176, pp.9, 2017, https://doi.org/10.1080/10420150.2021.1986822
  7. Fast Neutron and Gamma-Ray Attenuation Properties of Some HMO Tellurite-Tungstate-Antimonate Glasses: Impact of Sm3+ Ions vol.11, pp.21, 2021, https://doi.org/10.3390/app112110168