DOI QR코드

DOI QR Code

석유계 바인더 피치의 β-resin이 탄소블럭의 밀도에 미치는 영향

Effect of β-Resin of Petroleum-based Binder Pitch on Density of Carbon Block

  • 김경훈 (충남대학교 응용화학공학과) ;
  • 이상민 (충남대학교 응용화학공학과) ;
  • 안동해 (충남대학교 응용화학공학과) ;
  • 이영석 (충남대학교 응용화학공학과)
  • Kim, Kyung Hoon (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lee, Sangmin (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • An, Donghae (Department of Chemical Engineering and Applied Chemistry, Chungnam National University) ;
  • Lee, Young-Seak (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
  • 투고 : 2017.04.25
  • 심사 : 2017.06.08
  • 발행 : 2017.08.10

초록

석유 잔사유로부터 제조된 ${\beta}$-resin 함량이 각각 다른 바인더 피치와 등방코크스를 혼합 후 압축성형을 거쳐 탄소블럭을 제조하였다. 원소분석, FT-IR 및 열중량 분석을 통하여 바인더 피치의 물리적, 화학적 특성 및 열적 거동을 각각 고찰하였다. 또한, 주사전자현미경을 이용하여 측정된 탄소블럭의 파단면으로부터 등방코크스 입자와 바인더 피치의 결합성을 평가하였다. 실험 결과로부터 바인더 피치의 ${\beta}$-resin 함량이 높을수록 코크스와 바인더의 결합성이 향상됨을 알 수 있었다. 또한, 탄소블럭의 탄화 후 밀도는 ${\beta}$-resin 함량이 1.4%에서 20.1%로 증가함으로 인하여 $1.325g/cm^3$에서 $1.383g/cm^3$으로 증가하였다.

Carbon blocks were prepared by compression molding process using the mixture of isotropic cokes and binder pitches, which were reformed with different ${\beta}$-resin contents from pyrolysis fuel oil. Physical and chemical properties and also thermal behavior of binder pitches were investigated through elemental analysis, FT-IR and thermogravimetric analysis, respectively. The adhesion of binder pitches to isotropic coke particles was evaluated from SEM images of the fracture surface of carbon blocks. From these results, it is shown that the adhesion between the cokes and binder was enhanced by increasing the ${\beta}$-resin content of binder pitches. The density of the carbon block after carbonization also increased from 1.325 to $1.383g/cm^3$ by increasing the ${\beta}$-resin content of binder pitches from 1.4 to 20.1%.

키워드

참고문헌

  1. E. Savage, Carbon-Carbon Composites, 323-354, Chapman & Hall, London, UK (1993).
  2. Y. Zhao, J. Shi, H. Wang, Z. Tao, Z. Liu, Q. Guo, and L. Liu, A sandwich structure graphite block with excellent thermal and mechanical properties reinforced by in-situ grown carbon nanotubes, Carbon, 51, 427-430 (2013). https://doi.org/10.1016/j.carbon.2012.08.053
  3. I. Mochida, R. Fujiura, T. Kojima, H. Sakamoto, and T. Yoshimura, Carbon disc of high density and strength prepared from heat-treated mesophase pitch grains, Carbon, 33, 265-274 (1995). https://doi.org/10.1016/0008-6223(94)00134-L
  4. S.-M. Lee, D.-S. Kang, and J.-S. Roh, Bulk graphite: materials and manufacturing process, Carbon Lett., 16, 135-146 (2015). https://doi.org/10.5714/CL.2015.16.3.135
  5. Y.-G. Wang, Y. Korai, and I. Mochida, Carbon disc of high density and strength prepared from synthetic pitch-derived mesocarbon microbeads, Carbon, 37, 1049-1057 (1999). https://doi.org/10.1016/S0008-6223(98)00298-X
  6. M.-S. Park, S. Cho, E. Jeong, and Y.-S. Lee, Physico-chemical and electrochemical properties of pitch-based high crystallinity cokes used as electrode material for electric double layer capacitor, J. Ind. Eng. Chem., 23, 27-32 (2015). https://doi.org/10.1016/j.jiec.2014.07.038
  7. S.-M. Lee, D.-S. Kang, W.-S. Kim, and J.-S. Roh, Fabrication of isotropic bulk graphite using artificial graphite scrap, Carbon Lett., 15, 142-145 (2014). https://doi.org/10.5714/CL.2014.15.2.142
  8. J.-H. Kim and Y.-S. Lee, Characteristics of a high compressive strength graphite foam prepared from pitches using a PVA-AAc solution, J. Ind. Eng. Chem., 30, 127-133 (2015). https://doi.org/10.1016/j.jiec.2015.05.013
  9. L. Yingquan, Z. Zhengde, D. Chaoquan, and S. Yusheng, Investigation of brazing structure of bulk graphite to a W-Re substrate, Mater. Charact., 44, 425-429 (2000). https://doi.org/10.1016/S1044-5803(00)00062-0
  10. S. Ko, C. W. Lee, and J. S. Im, Petrochemical-waste-derived high-performance anode material for Li-ion batteries, J. Ind. Eng. Chem., 36, 125-131 (2016). https://doi.org/10.1016/j.jiec.2016.01.036
  11. F. Chevarin, K. Azari, D. Ziegler, R. Gauvin, M. Fafard, and H. Alamdari, Substrate effect of coke particles on the structure and reactivity of coke/pitch mixtures in carbon anodes, Fuel, 183, 123-131 (2016). https://doi.org/10.1016/j.fuel.2016.06.070
  12. S. Hussain, A. Trzcinski, H. Asghar, H. Sattar, N. Brown, and E. Roberts, Disinfection performance of adsorption using graphite adsorbent coupled with electrochemical regeneration for various microorganisms present in water, J. Ind. Eng. Chem., 44, 216-225 (2016). https://doi.org/10.1016/j.jiec.2016.09.009
  13. S.-M. Lee, D.-S. Kang, H.-S. Kim, and J.-S. Roh, Changes in the porosity of bulk graphite according to the viscosity of resin for impregnation, Carbon Lett., 16, 132-134 (2015). https://doi.org/10.5714/CL.2015.16.2.132
  14. H. Honda and T. Abe, Production of binder pitch from petroleum vacuum residue (Part 1): Relations between the properties of pitch obtained and heat-treatment conditions of vacuum residue, J. Jpn. Pet. Inst., 18, 758-763 (1975). https://doi.org/10.1627/jpi1958.18.758
  15. J.-Y. Yang, S.-H. Park, S.-J. Park, and M.-K. Seo, Preparation and characteristic of carbon/carbon composites with coal-tar and petroleum binder pitches, Appl. Chem. Eng., 26, 406-412 (2015). https://doi.org/10.14478/ace.2015.1035
  16. T. Metzinger and K. Huttinger, Investigations on the cross-linking of binder pitch matrix of carbon bodies with molecular oxygen-Part I. Chemistry of reactions between pitch and oxygen, Carbon, 35, 885-892 (1997). https://doi.org/10.1016/S0008-6223(97)00038-9
  17. G. Yuan, X. Li, Z. Dong, X. Xiong, B. Rand, Z. Cui, Y. Cong, J. Zhang, Y. Li, and Z. Zhang, Pitch-based ribbon-shaped carbon-fiber-reinforced one-dimensional carbon/carbon composites with ultrahigh thermal conductivity, Carbon, 68, 413-425 (2014). https://doi.org/10.1016/j.carbon.2013.11.018
  18. D. R. Ball, The influence of the type of quinoline insolubles on the quality of coal tar binder pitch, Carbon, 16, 205-209 (1978). https://doi.org/10.1016/0008-6223(78)90025-8
  19. M.-J. Jung, Y. Ko, and Y.-S. Lee, Synthesis of pitch from PFO, byproduct of naphtha cracking process using UV irradiation and $AlCl_3$ Catalyst, Appl. Chem. Eng., 26, 224-228 (2015). https://doi.org/10.14478/ace.2015.1023
  20. R. H. Wombles and M. D. Kiser, Developing coal tar/petroleum pitches. In: A. Tomsett and J. Johnson (eds.). Essential Readings in Light Metals: Electrode Technology for Aluminum Production, Volume 4, 246-250, Springer (2016).
  21. J. T. Baron, S. A. McKinney, and R. H. Wombles, Coal tar pitch-past, present, and future. In: A. Tomsett and J. Johnson (eds.). Essential Readings in Light Metals: Electrode Technology for Aluminum Production, Volume 4, 177-181, Springer (2016).
  22. J. Alcaniz-Monge, D. Cazorla-Amoros, A. Linares-Solano, A. Oya, A. Sakamoto, and K. Hosm, Preparation of general purpose carbon fibers from coal tar pitches with low softening point, Carbon, 35, 1079-1087 (1997). https://doi.org/10.1016/S0008-6223(97)00064-X
  23. W. Zhang, J. T. Andersson, H. J. Rader, and K. Mullen, Molecular characterization of large polycyclic aromatic hydrocarbons in solid petroleum pitch and coal tar pitch by high resolution MALDI ToF MS and insights from ion mobility separation, Carbon, 95, 672-680 (2015). https://doi.org/10.1016/j.carbon.2015.08.057
  24. K. Kanno, K. E. Yoon, J. J. Fernandez, I. Mochida, F. Fortin, and Y. Korai, Effects of carbon black addition on the carbonization of mesophase pitch, Carbon, 32, 801-807 (1994). https://doi.org/10.1016/0008-6223(94)90036-1
  25. J. Fernandez, A. Figueiras, M. Granda, J. Bermejo, and R. Menendez, Modification of coal-tar pitch by air-blowing: I. Variation of pitch composition and properties, Carbon, 33, 295-307 (1995). https://doi.org/10.1016/0008-6223(94)00130-R
  26. J.-Y. Jung, M.-S. Park, M. I. Kim, and Y.-S. Lee, Novel reforming of pyrolized fuel oil by electron beam radiation for pitch production, Carbon Lett., 15, 262-267 (2014). https://doi.org/10.5714/CL.2014.15.4.262
  27. Y. Yamada, Characterization of heavy oils and its application, (Part 4): Hydrodesulfurization of heavy oils, J. Jpn. Pet. Inst., 24, 71-80 (1981). https://doi.org/10.1627/jpi1958.24.71

피인용 문헌

  1. 건식 스피드 믹서를 이용한 PFO 피치 코팅 천연 흑연의 전기화학적 성능 vol.59, pp.3, 2017, https://doi.org/10.9713/kcer.2021.59.3.410
  2. Effect of kneading and carbonization temperature on the structure of the carbon block for thermally conductive bulk graphites vol.31, pp.6, 2017, https://doi.org/10.1007/s42823-021-00288-5