DOI QR코드

DOI QR Code

Application of Various Hydrophobic Moiety-modified Chitosan Nanoparticle as a Drug Delivery Carrier

다양한 소수성 물질이 개질된 키토산 나노입자의 약물전달체로서 응용성 고찰

  • Jeong, Gyeong-Won (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Nah, Jae-Woon (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Park, Jun-Kyu (CGbio Co. Ltd)
  • 정경원 (순천대학교 공과대학 고분자공학과) ;
  • 나재운 (순천대학교 공과대학 고분자공학과) ;
  • 박준규 ((주)시지바이오)
  • Received : 2017.05.08
  • Accepted : 2017.05.26
  • Published : 2017.08.10

Abstract

Natural polymer chitosan has been widely applied to medical fields due to its biochemical activities such as anticancer, antibacterial and lowering cholesterol in addition to biocompatibility and biodegradability. Currently, researches are being actively conducted to develop various drug-encapsulated chitosan nanoparticles for curing different diseases by applying chitosan to a drug delivery system. The free amine ($-NH_2$) group present in chitosan can bind to various hydrophobic groups by physical and chemical modification and the chitosan with hydrophobic groups can form shell-core nanoparticles by self-assembly when dispersed in water. In addition, an insoluble drug can increase the solubility against water when it was encapsulated in the core of chitosan nanoparticles. Also, the therapy effect can be maximized by minimizing side effects of drugs such as proteins, anticancer drugs and vaccines when they were encapsulated in the core of chitosan nanoparticles. Moreover, it is possible to control the particle size and release rate according to the hydrophobic group introduced to chitosan, so that it can be applied to a wide range of medical fields. The purpose of this review is to discuss the preparation and property of chitosan nanoparticles modified with various hydrophobic groups, and the application to drug delivery systems according to their property.

천연고분자 키토산은 생체적합하고 생분해성의 특성뿐만 아니라 항암, 항균, 콜레스테롤 저하 등의 다양한 생체활성을 갖고 있어 의료용 분야에서 많이 응용되고 있다. 현재 키토산을 약물전달시스템에 응용한 다양한 약물이 담지 된 키토산 나노입자를 개발하여 질병을 치료할 수 있는 연구가 활발히 진행 중에 있다. 키토산에 존재하는 free 아민($-NH_2$) 그룹은 다양한 소수성기를 물리적 화학적 개질을 통해 결합이 가능하며 소수성기가 도입된 키토산은 물에 분산시 자기회합에 의한 shell-core 나노입자를 형성하고 core 부분에 다양한 난용성 약물을 담지하여 물에 대한 용해도를 증가시킬 수 있으며, 단백질, 항암제, 백신 등의 다양한 약물을 담지하여 기존 약물의 부작용을 최소화하여 치료효과를 극대화할 수 있다. 또한, 키토산에 도입된 소수성기에 따라 입자의 크기 및 방출 속도를 제어할 수 있어 다양한 의료용 분야에 응용이 가능하다. 본 총설에서는 다양한 소수성기가 도입된 키토산 나노입자의 제조 및 특성과 특성에 따른 약물전달시스템의 응용성에 관하여 논의 하고자 한다.

Keywords

References

  1. M. Jaiswal, R. Dudhe, and P. K. Sharma, Nanoemulsion: an advanced mode of drug delivery system, 3 Biotech, 5, 123-127 (2015).
  2. I. Khan, M. Khan, M. N. Umar, and D. H. Oh, Nanobiotechnology and its applications in drug delivery system: a review, IET Nanobiotechnol., 9, 396-400 (2015). https://doi.org/10.1049/iet-nbt.2014.0062
  3. R. Pandey and G. K. Khuller, Nanotechnology based drug delivery system(s) for the management of tuberculosis, Indian J. Exp. Biol., 44, 357-366 (2006).
  4. J. D. Kingsley, H. Dou, J. Morehead, B. Rabinow, H. E. Gendelman, and C. J. Destache, Nanotechnology: A focus on nanoparticles as a drug delivery system, J. Neuroimmune Pharmacol., 1, 340-350 (2006). https://doi.org/10.1007/s11481-006-9032-4
  5. B. Dineshkumar, K. Krishnakumar, A. R. Bhatt, D. Paul, J. Cherian, A. John, and S. Suresh, Single-walled and multi-walled carbon nanotubes based drug delivery system: Cancer therapy: A review, Indian J. Cancer, 52, 262-264 (2015). https://doi.org/10.4103/0019-509X.176720
  6. M. J. Tobin, G. Jenouri, I. Danta, C. Kim, H. Watson, and M. A. Sackner, Response to bronchodilator drug administration by a new reservoir aerosol delivery system and a review of other auxiliary delivery systems, Am. Rev. Respir. Dis., 126, 670-675 (1982).
  7. K. Hori, M. Suzuki, S. Tanda, S. Saito, and Q. Zhang, Functional-characterization of developing tumor vascular system and drug delivery (review), Int. J. Oncol., 2, 289-296 (1993).
  8. A. Semalty, M. Semalty, R. Singh, S. K. Saraf, and S. Saraf, Iontophoretic drug delivery system: A review, Technol. Health Care, 15, 237-245 (2007).
  9. C. Bharti, U. Nagaich, A. K. Pal, and N. Gulati, Mesoporous silica nanoparticles in target drug delivery system: A review, Int. J. Pharm. Investig., 5, 124-133 (2015). https://doi.org/10.4103/2230-973X.160844
  10. B. Krishnamoorthy, V. Karanam, V. R. Chellan, K. Siram, T. S. Natarajan, and M. Gregory, Polymersomes as an effective drug delivery system for glioma-a review, J. Drug Target., 22, 469-477 (2014). https://doi.org/10.3109/1061186X.2014.916712
  11. Y. Hao, L. Wang, B. Zhang, D. Li, D. Meng, J. Shi, H. Zhang, Z. Zhang, and Y. Zhang, Manganese dioxide nanosheets-based redox/pH-responsive drug delivery system for cancer theranostic application, Int. J. Nanomed., 11, 1759-1778 (2016). https://doi.org/10.2217/nnm-2016-0160
  12. A. Vyas, A. Kumar Sonker, and B. Gidwani, Carrier-based drug delivery system for treatment of acne, ScientificWorldJournal, 2014, 276260-276273 (2014).
  13. K. Songsurang, K. Siraleartmukul, and N. Muangsin, Mucoadhesive drug carrier based on functional-modified cellulose as poorly water- soluble drug delivery system, J. Microencapsul, 32, 450-459 (2015). https://doi.org/10.3109/02652048.2015.1046516
  14. X. L. Bi, X. Liu, Q. Zu, and L. Q. Di, Application of oral micro-carrier drug delivery system in studies on traditional Chinese medicine, Zhongguo Zhong Yao Za Zhi, 38, 3638-3644 (2013).
  15. M. P. Patel, R. R. Patel, and J. K. Patel, Chitosan mediated targeted drug delivery system: a review, J. Pharm. Pharm. Sci., 13, 536-557 (2010). https://doi.org/10.18433/J3JC7C
  16. K. Nagpal, S. K. Singh, and D. N. Mishra, Chitosan nanoparticles: a promising system in novel drug delivery, Chem. Pharm. Bull., 58, 1423-1430 (2010). https://doi.org/10.1248/cpb.58.1423
  17. L. Hu, X. Meng, R. Xing, S. Liu, X. Chen, Y. Qin, H. Yu, and P. Li, Design, synthesis and antimicrobial activity of 6-N-substituted chitosan derivatives, Bioorg. Med. Chem. Lett., 26, 4548-4551 (2016). https://doi.org/10.1016/j.bmcl.2015.08.047
  18. J. Y. Je, Chitosan-phytochemical conjugates: Preparation, antioxidant, and NO inhibition in LPS-stimulated macrophages, J. Chitin Chitosan, 20, 245-250 (2015). https://doi.org/10.17642/jcc.20.4.4
  19. A. Zimoch-Korzycka and L. Bobak, A. Jarmoluk, Antimicrobial and antioxidant activity of chitosan/hydroxypropyl methylcellulose film-forming hydrosols hydrolyzed by cellulase, Int. J. Mol. Sci., 17(9), 1436-1445 (2016). https://doi.org/10.3390/ijms17091436
  20. L. Fan, S. Zou, H. Ge, Y. Xiao, H. Wen, H. Feng, M. Liu, and M. Nie, Preparation and characterization of hydroxypropyl chitosan modified with collagen peptide, Int. J. Biol. Macromol., 93, 636-643 (2016). https://doi.org/10.1016/j.ijbiomac.2016.07.093
  21. T. H. Kim, J. K. Park, C. Y. Choi, M. K. Jang, and J. W. Nah, Synthesis of low molecular water soluble chitosan conjugated biotin for utilizing target drug delivery system, J. Chitin Chitosan, 17, 37-42 (2012).
  22. G. W. Jeong, S. C. Park, C. Y. Choi, J. P. Nam, T. H. Kim, S. K. Choi, J. K. Park, and J. W. Nah, Anticancer effect of gene/peptide co-delivery system using transferrin-grafted LMWSC, Int. J. Pharm., 488, 165-173 (2015). https://doi.org/10.1016/j.ijpharm.2015.04.057
  23. C. Zhang, Y. Ding, Q. Ping, and L. L. Yu, Novel chitosan-derived nanomaterials and their micelle-forming properties, J. Agric. Food Chem., 54, 8409-8416 (2006). https://doi.org/10.1021/jf061541w
  24. M. Huo, Y. Zhang, J. Zhou, A. Zou, D. Yu, Y. Wu, J. Li, and H. Li, Synthesis and characterization of low-toxic amphiphilic chitosan derivatives and their application as micelle carrier for antitumor drug, Int. J. Pharm., 394, 162-173 (2010). https://doi.org/10.1016/j.ijpharm.2010.05.001
  25. T. Yan, D. Li, J. Li, F. Cheng, J. Cheng, Y. Huang, and J. He, Effective co-delivery of doxorubicin and curcumin using a glycyrrhetinic acid-modified chitosan-cystamine-poly(epsilon- caprolactone) copolymer micelle for combination cancer chemotherapy, Colloids Surf. B, 145, 526-538 (2016). https://doi.org/10.1016/j.colsurfb.2016.05.070
  26. C. Zhang, Y. Ding, L. L. Yu, and Q. Ping, Polymeric micelle systems of hydroxycamptothecin based on amphiphilic N-alkyl-N-trimethyl chitosan derivatives, Colloids Surf. B, 55, 192-199 (2007). https://doi.org/10.1016/j.colsurfb.2006.11.031
  27. H. R. Lin and P. C. Chang, Novel pluronic-chitosan micelle as an ocular delivery system, J. Biomed. Mater. Res. B, 101, 689-699 (2013).
  28. G. Qu, X. Zhu, C. Zhang, and Q. Ping, Modified chitosan derivative micelle system for natural anti-tumor product gambogic acid delivery, Drug Deliv., 16, 363-370 (2009). https://doi.org/10.1080/10717540903075545
  29. J. Singh and P. K. Dutta, Preparation, circular dichroism induced helical conformation and optical property of chitosan acid salt complexes for biomedical applications, Int. J. Biol. Macromol., 45, 384-392 (2009). https://doi.org/10.1016/j.ijbiomac.2009.07.004
  30. M. Malekigorji, A. D. M. Curtis, and C. Hoskins, The use of iron oxide nanoparticles for pancreatic cancer therapy, J. Nanomed. Res., 1(1), 1-12 (2014).
  31. C. Liu, Y. Wu, L. Zhao, and X. Huang, Preparation of acetylsalicylic acid-acylated chitosan as a novel polymeric drug for drug controlled release, Int. J. Biol. Macromol., 78, 189-194 (2015). https://doi.org/10.1016/j.ijbiomac.2015.03.063
  32. P. I. Siafaka, A. Titopoulou, E. N. Koukaras, M. Kostoglou, E. Koutris, E. Karavas, D. N. Bikiaris, Chitosan derivatives as effective nanocarriers for ocular release of timolol drug, Int. J. Pharm., 495, 249-264 (2015). https://doi.org/10.1016/j.ijpharm.2015.08.100
  33. V. M. Heinze and A. B. Actis, Dietary conjugated linoleic acid and long-chain n-3 fatty acids in mammary and prostate cancer protection: a review, Int. J. Food Sci. Nutr., 63, 66-78 (2012). https://doi.org/10.3109/09637486.2011.598849
  34. A. B. Thomson, Unidirectional flux rate of cholesterol and fatty acids into the intestine of rats with drug-induced diabetes mellitus: effect of variations in the effective resistance of the unstirred water layer and the bile acid micelle, J. Lipid Res., 21, 687-698 (1980).
  35. Y. T. Xie, Y. Z. Du, H. Yuan, and F. Q. Hu, Brain-targeting study of stearic acid-grafted chitosan micelle drug-delivery system, Int. J. Nanomed., 7, 3235-3244 (2012).
  36. H. A. Tajmir-Riahi, S. Nafisi, S. Sanyakamdhorn, D. Agudelo, P. Chanphai, Applications of chitosan nanoparticles in drug delivery, Methods Mol. Biol., 1141, 165-184 (2014).
  37. L. Meng, W. Huang, D. Wang, X. Huang, X. Zhu, and D. Yan, Chitosan-based nanocarriers with pH and light dual response for anticancer drug delivery, Biomacromolecules, 14, 2601-2610 (2013). https://doi.org/10.1021/bm400451v
  38. Z. Chen, L. Zhang, Y. Song, J. He, L. Wu, C. Zhao, Y. Xiao, W. Li, B. Cai, H. Cheng, and W. Li, Hierarchical targeted hepatocyte mitochondrial multifunctional chitosan nanoparticles for anticancer drug delivery, Biomaterials, 52, 240-250 (2015). https://doi.org/10.1016/j.biomaterials.2015.02.001
  39. J. Y. Lee, C. Crake, B. Teo, D. Carugo, M. de Saint Victor, A. Seth, and E. Stride, Ultrasound-enhanced siRNA delivery using magnetic nanoparticle-loaded chitosan-deoxycholic acid nanodroplets, Adv. Healthc. Mater., 6, 1-9 (2017).
  40. M. Wu, K. Guo, H. Dong, R. Zeng, M. Tu, and J. Zhao, In vitro drug release and biological evaluation of biomimetic polymeric micelles self-assembled from amphiphilic deoxycholic acid-phosphorylcholine-chitosan conjugate, Mater. Sci. Eng. C, 45, 162-169 (2014). https://doi.org/10.1016/j.msec.2014.09.008
  41. S. Y. Chae, S. Son, M. Lee, M. K. Jang, and J. W. Nah, Deoxycholic acid-conjugated chitosan oligosaccharide nanoparticles for efficient gene carrier, J. Control. Release, 109, 330-344 (2005). https://doi.org/10.1016/j.jconrel.2005.09.040
  42. H. Zhou, W. Yu, X. Guo, X. Liu, N. Li, Y. Zhang, and X. Ma, Synthesis and characterization of amphiphilic glycidol-chitosan-deoxycholic acid nanoparticles as a drug carrier for doxorubicin, Biomacromolecules, 11, 3480-3486 (2010). https://doi.org/10.1021/bm100989x
  43. K. Kim, S. Kwon, J. H. Park, H. Chung, S. Y. Jeong, I. C. Kwon, and I. S. Kim, Physicochemical characterizations of self-assembled nanoparticles of glycol chitosan-deoxycholic acid conjugates, Biomacromolecules, 6, 1154-1158 (2005). https://doi.org/10.1021/bm049305m
  44. Y. H. Kim, S. H. Gihm, C. R. Park, K. Y. Lee, T. W. Kim, I. C. Kwon, H. Chung, and S. Y. Jeong, Structural characteristics of size-controlled self-aggregates of deoxycholic acid-modified chitosan and their application as a DNA delivery carrier, Bioconjug. Chem., 12, 932-938 (2001). https://doi.org/10.1021/bc015510c
  45. V. A. Shchelkonogov, G. M. Sorokoumova, O. A. Baranova, A. V. Chekanov, A. V. Klochkova, K. D. Kazarinov, E. Y. Solovieva, A. I. Fedin, and V. I. Shvets, Liposomal form of lipoic acid: preparation and determination of antiplatelet and antioxidant activity, Biomed. Khim., 62, 577-583 (2016). https://doi.org/10.18097/pbmc20166205577
  46. F. A. Moura, K. Q. de Andrade, J. C. dos Santos, and M. O. Goulart, Lipoic acid: Its antioxidant and anti-inflammatory role and clinical applications, Curr. Top. Med. Chem., 15, 458-483 (2015). https://doi.org/10.2174/1568026615666150114161358
  47. G. Liu, K. Li, and H. Wang, Polymeric micelles based on PEGylated chitosan-g-lipoic acid as carrier for efficient intracellular drug delivery, J. Biomater. Appl., 31, 1039-1048 (2017). https://doi.org/10.1177/0885328216685755
  48. S. D. Yang, W. J. Zhu, Q. L. Zhu, W. L. Chen, Z. X. Ren, F. Li, Z. Q. Yuan, J. Z. Li, Y. Liu, X. F. Zhou, C. Liu, and X. N. Zhang, Binary-copolymer system base on low-density lipoprotein-coupled N-succinyl chitosan lipoic acid micelles for co-delivery MDR1 siRNA and paclitaxel, enhances antitumor effects via reducing drug, J. Biomed. Mater. Res. Part B Appl. Biomater., 105, 1114-1125 (2016).
  49. S. C. How, Y. F. Chen, P. L. Hsieh, S. S. Wang, and J. S. Jan, Cell-targeted, dual reduction- and pH-responsive saccharide/lipoic acid-modified poly(L-lysine) and poly(acrylic acid) polyionic complex nanogels for drug delivery, Colloids Surf. B, 153, 244-252 (2017). https://doi.org/10.1016/j.colsurfb.2017.02.032
  50. R. Wei, L. Cheng, M. Zheng, R. Cheng, F. Meng, C. Deng, and Z. Zhong, Reduction-responsive disassemblable core-cross-linked micelles based on poly(ethylene glycol)-b-poly(N-2-hydroxypropyl methacrylamide)-lipoic acid conjugates for triggered intracellular anticancer drug release, Biomacromolecules, 13, 2429-2438 (2012). https://doi.org/10.1021/bm3006819
  51. O. E. Philippova, E. V. Volkov, N. L. Sitnikova, A. R. Khokhlov, J. Desbrieres, and M. Rinaudo, Two types of hydrophobic aggregates in aqueous solutions of chitosan and its hydrophobic derivative, Biomacromolecules, 2, 483-490 (2001). https://doi.org/10.1021/bm005649a
  52. L. Zhu, C. Tu, B. Zhu, Y. Su, Y. Pang, D. Yan, J. Wu, and X. Zhu, Construction and application of pH-triggered cleavable hyperbranched polyacylhydrazone for drug delivery, Polym. Chem., 2, 1761-1768 (2011). https://doi.org/10.1039/c1py00161b
  53. Y. Zhou, J. Yu, X. Feng, W. Li, Y. Wang, H. Jin, H. Huang, Y. Liud, and D. Fanac, Reduction-responsive core-crosslinked micelles based on a glycol chitosan-lipoic acid conjugate for triggered release of doxorubicin, RSC Adv., 6, 31391-31400 (2016). https://doi.org/10.1039/C6RA05501J

Cited by

  1. 나노키토산의 식품분야에서의 이용 vol.53, pp.1, 2017, https://doi.org/10.23093/fsi.2020.53.1.56