DOI QR코드

DOI QR Code

알츠하이머 질병 진단을 위한 혈액 바이오마커 검출용 바이오칩 센서 개발

Development of Biochip Sensors for Blood Biomarkers Specific to Alzheimer's Disease Diagnostics

  • 김수희 (경북대학교 자연과학대학 화학과 및 청정나노소재 연구소) ;
  • 이상혁 (경북대학교 자연과학대학 화학과 및 청정나노소재 연구소) ;
  • 이혜진 (경북대학교 자연과학대학 화학과 및 청정나노소재 연구소)
  • Kim, Suhee (Department of Chemistry and Green-Nano materials Research Center, Kyungpook National University) ;
  • Lee, Sang Hyuk (Department of Chemistry and Green-Nano materials Research Center, Kyungpook National University) ;
  • Lee, Hye Jin (Department of Chemistry and Green-Nano materials Research Center, Kyungpook National University)
  • 투고 : 2017.07.15
  • 심사 : 2017.07.20
  • 발행 : 2017.08.10

초록

해마다 증가하는 알츠하이머 질병에 걸린 환자 수는 전체 노인 인구의 15%에 다다르고 있다. 인지장애를 유발하는 심각한 알츠하이머 질병을 조기에 진단하는 것은 중요한 일이지만 MRI, PET, 척수액 진단법과 같은 기존 진단법은 고비용뿐만 아니라 장시간의 진단으로 환자에게 부담을 줄 수 있다. 이러한 기존 알츠하이머 질병 진단법의 단점을 극복하기 위하여 소량의 환자 시료(예 : 혈액)만으로 신속하게 알츠하이머 질병을 조기에 진단할 수 있는 다양한 바이오센싱 기술을 개발하는 연구가 지속되고 있다. 본 미니총설에서는 알츠하이머 질병 진단에 유용하게 활용될 수 있는 혈액 바이오마커를 정성 및 정량적으로 검출할 수 있는 바이오칩 기반의 센서 기술과 이를 통한 조기진단 기술에 대해 간략하게 서술하고, 이와 관련한 최신 연구현황과 발전방향에 대해 논의하고자 한다.

The number of patients suffering from Alzheimer's disease is increasing year after year and almost approaching 15% of the total elderly population. Although it is critical to detect the early stage of Alzheimer's disease, which is a serious illness causing cognitive deficits, various existing diagnosis methods such as MRI, PET and CSF analysis could be the burdens for patients due to their high costs and long time to diagnosis. In order to tackle some of challenging issues for such existing diagnosis methods, extensive efforts have been made on developing fast and convenient biochip sensing methodologies for the diagnosis of Alzheimer's disease with a droplet of patient biofluids (e.g., blood). In this mini-review, we highlight some of the latest biochip sensing technologies that could qualitatively and quantitatively analyze blood biomarkers used for Alzheimer's disease diagnostics and discuss briefly related research trends and future aspects.

키워드

참고문헌

  1. R. J. Bateman, C. Xiong, T. L. S. Benzinger, A. M. Fagan, A. Goate, N. C. Fox, D. S. Marcus, N. J. Cairns, X. Xie, T. M. Blazey, D. M. Holtzman, A. Santacruz, V. Buckles, A. Oliver, K. Moulder, P. S. Aisen, B. Ghetti, W. E. Klunk, E. McDade, R. N. Martins, C. L. Masters, R. Mayeux, J. M. Ringman, M. N. Rossor, P. R. Schofield, R. A. Sperling, S. Salloway, and J. C. Morris, Clinical and biomarker changes in dominantly inherited Alzheimer's disease, N. Engl. J. Med., 367, 795-804 (2012). https://doi.org/10.1056/NEJMoa1202753
  2. J. Holger, Memory loss in Alzheimer's disease, Dialogues Clin. Neurosci., 15, 445-454 (2013).
  3. B. Dubois, H. Hampel, H. H. Feldman, P. Scheltens, P. Aisen, S. Andrieu, H. Bakardjian, H. Benali, L. Bertram, K. Blennow, K. Broich, E. Cavedo, S. Crutch, J.-F. Dartigues, C. Duyckaerts, S. Epelbaum, G. B. Frisoni, S. Gauthier, R. Genthon, A. A. Gouw, M.-O. Habert, D. M. Holtzman, M. Kivipelto, S. Lista, J.-L. Molinuevo, S. E. O'Bryant, G. D. Rabinovici, C. Rowe, S. Salloway, L. S. Schneider, R. Sperling, M. Teichmann, M. C. Carrillo, J. Cummings, and J. C. R. Jack, Preclinical Alzheimer's disease: Definition, natural history, and diagnostic criteria, Alzheimers Dement., 12, 292-323 (2016). https://doi.org/10.1016/j.jalz.2016.02.002
  4. A. Accorroni, F. S. Giorgi, R. Donzelli, L. Lorenzini, C. Prontera, A. Saba, A. Vergallo, G. Tognoni, G. Siciliano, F. Baldacci, U. Bonuccelli, A. Clerico, and R. Zucchi, Thyroid hormone levels in the cerebrospinal fluid correlate with disease severity in euthyroid patients with Alzheimer's disease, Endocrine, 55, 981-984 (2017). https://doi.org/10.1007/s12020-016-0897-6
  5. L. Liu, N. Xia, and J. Wang, Potential applications of SPR in early diagnosis and progression of Alzheimer's disease, RSC Adv., 2, 2200-2204 (2012). https://doi.org/10.1039/c2ra00667g
  6. S. A. Park, J. H. Kim, H. J. Kim, T. E. Kim, Y.-J. Kim, D. H. Lee, J. H. Park, W. S. Chae, S. J. Yim, S. W. Seo, D. L. Na, and S. H. Choi, Preliminary study for a multicenter study of Alzheimer's disease cerebrospinal fluid biomarkers, Dement. Neurocogn. Disord., 12, 1-8 (2013). https://doi.org/10.12779/dnd.2013.12.1.1
  7. W. Zhou, P.-J. J. Huang, J. Ding, and J. Liu, Aptamer-based biosensors for biomedical diagnostics, Analyst, 139, 2627-2640 (2014). https://doi.org/10.1039/c4an00132j
  8. L. Y. Yeo, H.-C. Chang, P. P. Y. Chan, and J. R. Friend, Microfluidic devices for bioapplications, Small, 7, 12-48 (2011). https://doi.org/10.1002/smll.201000946
  9. G.-J. Ye, R. A. Oshins, F. N. Rouhani, M. L. Brantly, and J. D. Chulay, Development, validation and use of ELISA for antibodies to human alpha-1 antitrypsin, J. Immunol. Methods., 388, 18-24 (2013). https://doi.org/10.1016/j.jim.2012.11.008
  10. H. Li, C. Ya, X. Wu, Z. Ye, and G. Li, Peptide-based electrochemical biosensor for amyloid ${\beta}1-42$ soluble oligomer assay, Talanta, 93, 358-363 (2012). https://doi.org/10.1016/j.talanta.2012.02.055
  11. A. Olaru, C. Bala, N. J.-Renault, and H. Y. A.-Enein, Surface plasmon resonance (SPR) biosensors in pharmaceutical analysis, Crit. Rev. Anal. Chem., 45, 97-105 (2015). https://doi.org/10.1080/10408347.2014.881250
  12. H. Englund, D. Sehlin, A.-S. Johansson, L. N. G. Nilsson, P. Gellerfors, S. Paulie, L. Lannfelt, and F. E. Pettersson, Sensitive ELISA detection of amyloid-$\beta$ protofibrils in biological samples, J. Neurochem., 103, 334-345 (2007).
  13. S. Levy, M. McConville, G. A. Lazaro, and P. Averback, Competitive ELISA studies of neural thread protein in urine in Alzheimer's disease, J. Clin. Lab. Anal., 21, 24-33 (2007). https://doi.org/10.1002/jcla.20159
  14. F. S. Diba, S. Kim, and H. J. Lee, Amperometric bioaffinity sensing platform for avian influenza virus proteins with aptamer modified gold nanoparticles on carbon chips, Biosens. Bioelectron., 72, 355-361 (2015). https://doi.org/10.1016/j.bios.2015.05.020
  15. J. Homola, S. S. Yee, and G. Gauglitz, Susrface plasmon resonanace sensors: review, Sens. Actuators B, 54, 3-15 (1999). https://doi.org/10.1016/S0925-4005(98)00321-9
  16. R. M. Corn and S. C. Weibel, Fourier transform surface plasmon resonance in Handbook of vibrational spectroscopy, vol. 2, J. M. Chalmers and P. R. Griffiths (eds), John Wiley & Sons, Ltd, 1057-1064 (2006).
  17. J. M. Brockman, B. P. Nelson, and R. M. Corn, Surface plasmon resonance imaging measurements of ultrathin organic films, Annu. Rev. Phys. Chem., 51, 41-63 (2000). https://doi.org/10.1146/annurev.physchem.51.1.41
  18. K. M. Mayer and J. H. Hafner, Localized surface plasmon resonance sensors, Chem. Rev., 111, 3828-3857 (2011). https://doi.org/10.1021/cr100313v
  19. C. M. Cho, S. H. Kim, S. M. Yoon, Y. H. Ko, J. P. Jun, and J. H. Soung, Biomarker development for the diagnosis of Alzheimer's disease, Public Health Wkly. Rep., 8, 618-621 (2015).
  20. B. Olsson, R. Lautner, U. Andreasson, A. Ohrfelt, E. Portelius, M. Bjerke, M. Holtta, C. Rosen, C. Olsson, G. Strobel, E. Wu, K. Dakin, M. Petzold, K. Blennow, and H. Zetterberg, CSF and blood biomarkers for the diagnosis of Alzheimer's disease: a systematic review and meta-analysis, Lancet Neurol., 15, 673-684 (2016). https://doi.org/10.1016/S1474-4422(16)00070-3
  21. M. Thambisetty and S. Lovestone, Blood-based biomarkers of Alzheimer's disease: challenging but feasible, Biomark. Med., 4, 65-79 (2010). https://doi.org/10.2217/bmm.09.84
  22. K. Blennow and H. Hampel, CSF markers for incipient Alzheimer's disease, Lancet Neurol., 2, 605-613 (2003). https://doi.org/10.1016/S1474-4422(03)00530-1
  23. C. Humpel, Identifying and validating biomarkers for Alzheimer's disease, Trends Biotechnol., 29, 26-32 (2011). https://doi.org/10.1016/j.tibtech.2010.09.007
  24. A. L. Baird, S. Westwood, and S. Lovestone, Blood-based proteomic biomarkers of Alzheimer's disease pathology, Front Neurol., 6, 1-16 (2015).
  25. M. Ramakrishnan, K. K. Kandimalla, T. M. Wengenack, K. G. Howell, and J. F. Poduslo, Surface plasmon resonance binding kinetics of Alzheimer's disease amyloid $\beta$ peptide-capturing and plaque-binding monoclonal antibodies, Biochemistry, 48, 10405-10415 (2009). https://doi.org/10.1021/bi900523q
  26. F. S. Diba, S. Kim, and H. J. Lee, Electrochemical immunoassay for amyloid-beta 1-42 peptide inbiological fluids interfacing with a gold nanoparticle modified carbonsurface, Catal. Today, https://doi.org/10.1016/j.cattod.2017.02.039.
  27. S. Kim and H. J. Lee, Direct detection of : ${\alpha}-1$ antitrypsin in serum samples using surface plasmon resonance with a new aptamer-antibody sandwich assay, Anal. Chem., 87, 7235-7240 (2015). https://doi.org/10.1021/acs.analchem.5b01192
  28. S. Kim, A. W. Wark, and H. J. Lee, Femtomolar detection of tau proteins in undiluted plasma using surface plasmon resonance, Anal. Chem., 88, 7793-7799 (2016). https://doi.org/10.1021/acs.analchem.6b01825
  29. K. Hegnerova, M. Bockova, H. Vaisocherova, Z. Kristofikova, J. Ricny, D. Ripova, and J. Homola, Surface plasmon resonance biosensors for detection of Alzheimer disease biomarker, Sens. Actuators B, 139, 69-73 (2009). https://doi.org/10.1016/j.snb.2008.09.006
  30. L. Velayudhan, R. Killick, A. Hye, A. Kinsey, A. Guntert, S. Lynham, M. Ward, R. Leung, A. Lourdusamy, A. W. M. To, J. Powell, and S. Lovestone, Plasma transthyretin as a candidate marker for Alzheimer's disease, J. Alzheimers Dis., 28, 369-375 (2012). https://doi.org/10.3233/JAD-2011-110611
  31. M. Thambisetty, Y. An, A. Kinsey, D. Koka, M. Saleem, A. Guntert, M. Kraut, L. Ferrucci, C. Davatzikos, S. Lovestone, and S. M. Resnick, Plasma clusterin concentration is associated with longitudinal brain atrophy in mild cognitive impairment, Neurolmage, 59, 212-217 (2012). https://doi.org/10.1016/j.neuroimage.2011.07.056
  32. S. Tonello, M. Serpelloni, N. F. Lopomo, G. Abate, D. L. Uberti, and E. Sardini, Screen-printed biosensors for the early detection of biomarkers related to Alzheimer disease: preliminary results, Procedia Eng., 168, 147-150 (2016). https://doi.org/10.1016/j.proeng.2016.11.182
  33. H. R. Jang, A. W. Wark, S. H. Baek, B. H. Chung, and H. J. Lee, Ultrasensitive and ultrawide range detection of a cardiac biomarker on a surface plasmon resonance platform, Anal. Chem., 86, 814-819 (2014). https://doi.org/10.1021/ac4033565
  34. M. J. Kwon, J. Lee, A. W. Wark, and H. J. Lee, Nanoparticle-enhanced surface plasmon resonance detection of proteins at attomolar concentrations: comparing different nanoparticle shapes and sizes, Anal. Chem., 84, 1702-1707 (2012). https://doi.org/10.1021/ac202957h
  35. S. Zeng, D. Baillargeat, H.-P. Ho, and K.-T. Yong, Nanomaterials enhanced surface plasmon resonance for biological and chemical sensing applications, Chem. Soc. Rev., 43, 3426-3452 (2014). https://doi.org/10.1039/c3cs60479a
  36. K. Henriksen, Y. Wang, M. G. Sorensen, N. Barascuk, J. Suhy, J. T. Pedersen, K. L. Duffin, R. A. Dean, M. Pajak, C. Christiansen, Q. Zheng, and M. A. Karsdal, An enzyme-generated fragment of tau measured in serum shows an inverse correlation to cognitive function, PLoS ONE, 8, 1-7 (2013).
  37. V. P.-Grijalba, P. Pesini, I. Monleon, M. Boada, L. Tarraga, A. R.-Laza, P. M.-Lage, I. S.-Jose, and M. Sarasa, Several direct and calculated biomarkers from the amyloid-$\beta$ pool in blood are associated with an increased likelihood of suffering from mild cognitive impairment, J. Alzheimers Dis., 36, 211-219 (2013). https://doi.org/10.3233/JAD-121744
  38. Y. Liu, Q. Zhou, and A. Revzin, An aptasensor for electrochemical detection of tumor necrosis factor in human blood, Analyst, 138, 4321-4326 (2013). https://doi.org/10.1039/c3an00818e
  39. M. Vestergaard, K. Kerman, M. Saito, N. Nagatani, Y. Takamura, and E. Tamiya, A rapid label-free electrochemical detection and kinetic study of Alzheimer's amyloid beta aggregation, J. Am. Chem. Soc., 127, 11892-11893 (2005). https://doi.org/10.1021/ja052522q
  40. I. Abdulhalim, M. Zourob, and A. Lakhtakia, Surface plasmon resonance for biosensing: A mini-review, Electromagnetics, 28, 214-242 (2008). https://doi.org/10.1080/02726340801921650
  41. T. Endo, K. Kerman, N. Nagatani, Y. Takamura, and E. Tamiya, Label-free detection of peptide nucleic acid-DNA hybridization using localized surface plasmon resonance based optical biosensor, Anal. Chem., 77, 6976-6984 (2005). https://doi.org/10.1021/ac0513459
  42. X. D. Hoa, A. G. Kirk, and M. Tabrizian, Towards intergrated and sensitive surface plasmon resonance biosensors: A review of recent progress, Biosens. Bioelectron., 23, 151-160 (2007). https://doi.org/10.1016/j.bios.2007.07.001
  43. S.-H. Jung, J.-W. Jung, I.-B. Suh, J. S. Yuk, W.-J. Kim, E. Y. Choi, Y.-M. Kim, and K.-S. Ha, Analysis of C-reactive protein on amide-linked n-hydroxysuccinimide-dextran arrays with a spectral surface plasmon resonance biosensor for serodiagnosis, Anal. Chem., 9, 5703-5710 (2007).
  44. Y. Li, H. J. Lee, and R. M. Corn, Detection of protein biomarkers using RNA aptamer microarrays and enzymatically amplified surface plasmon resonance imaging, Anal. Chem., 79, 1082-1088 (2007). https://doi.org/10.1021/ac061849m
  45. A. Bini, S. Centi, S. Tombelli, M. Minunni, and M. Mascini, Development of an optical RNA-based aptasensor for C-reactive protein, Anal. Bioanal. Chem., 90, 1077-1086 (2008).
  46. J. Ladd, A. D. Taylor, M. Piliarik, J. Homola, and S. Jiang, Label-free detection of cancer biomarker candidates using surface plasmon resonance imaging, Anal. Bioanal. Chem., 393, 1157-1163 (2009). https://doi.org/10.1007/s00216-008-2448-3
  47. H. Vaisocherova, V. M. Faca, A. D. Taylor, S. Hanash, and S. Jiang, Comparative study of SPR and ELISA methods based on analysis of CD166/ALCAM levels in cancer and control human sera, Biosens. Bioelectron., 24, 2143-2148 (2009). https://doi.org/10.1016/j.bios.2008.11.015
  48. Z. Altintas, Y. Uludag, Y. Gurbuz, and I. E. Tothill, Surface plasmon resonance based immunosensor for the detection of the cancer biomarker carcinoembryonic antigen, Talanta, 86, 377-383 (2011). https://doi.org/10.1016/j.talanta.2011.09.031
  49. Q. Zhao, R. Duan, J. Yuan, Y. Quan, H. Yang, and M. Xi, A reusable localized surface plasmon resonance biosensor for quantitative detection of serum squamous cell carcinoma antigen in cervical cancer patients based on silver nanoparticles array, Int. J. Nanomed., 9, 1097-1104 (2014).
  50. J.-F. Masson, Surface plasmon resonance clinical biosensors for medical diagnostics, ACS Sens., 2, 16-30 (2017). https://doi.org/10.1021/acssensors.6b00763
  51. J. Homola, Surface plasmon resonance sensors for detection of chemical and biological species, Chem. Rev., 108, 462-493 (2008). https://doi.org/10.1021/cr068107d
  52. A. J. Haes, W. P. Hall, L. Chang, W. L. Klein, and R. P. V. Duyne, A localized surface plasmon resonance biosensor: first steps toward an assay for Alzheimer's disease, Nano Lett., 4, 1029-1034 (2004). https://doi.org/10.1021/nl049670j
  53. A. J. Haes, L. Chang, W. L. Klein, and R. P. V. Duyne, Detection of a biomarker for Alzheimer's disease from synthetic and clinical samples using a nanoscale optical biosensor, J. Am. Chem. Soc., 127, 2264-2271 (2005). https://doi.org/10.1021/ja044087q
  54. S. Shekhar, R. Kumar, N. Rai, V. Kumar, K. Singh, A. D. Upadhyay, M. Tripathi, S. Dwivedi, A. B. Dey, and S. Dey, Estimation of tau and phosphorylated tau181 in serum of Alzheimer's disease and mild cognitive impairment patients, PLoS ONE, 11, 1-10 (2016).
  55. H. J. Lee, A. W. Wark, and R. M. Corn, Microarray methods for protein biomarker detection, Analyst, 133, 975-983 (2008). https://doi.org/10.1039/b717527b
  56. M. D. Sonawane and S. B. Nimse, Surface modification chemistries of materials used in diagnostic platforms with biomolecules, J. Chem., 2016, 1-19 (2016).