DOI QR코드

DOI QR Code

Graph Equations Involving Tensor Product of Graphs

  • Patil, H.P. (Department of Mathematics, Pondicherry University, Kalapet Campus) ;
  • Raja, V. (Department of Mathematics, Pondicherry University, Kalapet Campus)
  • 투고 : 2015.02.24
  • 심사 : 2017.01.21
  • 발행 : 2017.06.23

초록

In this paper, we solve the following four graph equations $L^k(G)=H{\oplus}J$; $M(G)=H{\oplus}J$; ${\bar{L^k(G)}}=H{\oplus}J$ and ${\bar{M(G)}}=H{\oplus}J$, where J is $nK_2$ for $n{\geq}1$. Here, the equality symbol = means the isomorphism between the corresponding graphs. In particular, we shall obtain all pairs of graphs (G, H), which satisfy the above mentioned equations, upto isomorphism.

키워드

참고문헌

  1. M. Behzad and G. Chartrand, Introduction to the theory of graphs, Allyn and Bacon. Inc. Boston, 1972.
  2. D. M. Cvetkovic, Spectrum of the total graph of a graph, Publ. Inst. Math. (Beograd), 16(30)(1973), 49-52.
  3. M. Farzan and D. A. Waller, Kronecker products and local joins of graphs, Canad. J. Math., 29(2)(1977), 255-269. https://doi.org/10.4153/CJM-1977-027-1
  4. T. Hamada and I. Yoshimura, Traversability and connectivity of the middle graph of a graph, Discrete Math., 14(1976), 247-255. https://doi.org/10.1016/0012-365X(76)90037-6
  5. F. Harary, Graph theory, Addison-Wesley Publishing Co., Reading, Mass-Menlo Park, Calif.-London, 1969.
  6. V. R. Kulli and H. P. Patil, Graph equations for line graphs, middle graphs and entire graphs, J. Karnatak Univ. Sci., 23(1978), 25-28.
  7. H. P. Patil and R. Pandiya Raj, Characterizations of k-ctrees and graph valued functions, J. Combin. Math. Combin. Comput., 84(2013), 91-98.
  8. H. P. Patil and V. Raja, On tensor product of graphs, girth and triangles, Iran. J. Math. Sci. Inform., 10(1)(2015), 139-147.
  9. E. Sampathkumar and S. B. Chikkodimath, Semi-total graphs of a graph I, J. Karnatak Univ. Sci., 18(1973), 274-280.
  10. D. V. S. S. Sastry and B. S. P. Raju, Graph equations for line graphs, middle graphs and quasitotal graphs, Discrete Math., 48(1984), 113-119. https://doi.org/10.1016/0012-365X(84)90137-7
  11. P. M. Weichsel, The Kronecker product of graphs, Proc. Amer. Math. Soc., 13(1962), 47-52. https://doi.org/10.1090/S0002-9939-1962-0133816-6