DOI QR코드

DOI QR Code

자동 타임 워핑에 기반한 온라인 궤적 최적화

On-line Trajectory Optimization Based on Automatic Time Warping

  • 투고 : 2017.06.24
  • 심사 : 2017.07.06
  • 발행 : 2017.07.14

초록

본 논문에서는 물리 기반 가상 환경에서 참조 동작을 추적하는 캐릭터 동작을 생성할 때 캐릭터 동작에 대한 최적화와 함께 참조 동작에 대한 타임 워핑(time warping)을 동시에 수행할 수 있는 새로운 온라인 궤적 최적화(trajectory optimization) 기법을 제안한다. 일반적으로 참조 동작에 대한 샘플링 시간이 균일한 간격으로 고정되어 있는 기존의 물리 기반 캐릭터 애니메이션 기법과는 달리, 본 논문에서 제안하는 방법은 캐릭터 동작의 물리적 변화와 함께 샘플링 시간의 변화를 동시에 최적화 시킴으로써 외력에 대해 더욱 효과적으로 대응할 수 있는 참조 동작에 대한 최적의 타임 워핑을 찾아낸다. 이를 위해, 전신 캐릭터(full-body character)의 동역학과 함께 참조 동작에 대한 샘플링 시간의 변화를 함께 고려한 최적 제어 문제(optimal control problem)를 정형화하고 이 문제를 실행 시간에 시간 축을 따라 이동하는 고정된 크기의 시간 윈도우에 대해 반복적으로 풂으로써 캐릭터 동작과 샘플링 시간에 대한 최적 제어 정책(optimal control policy)을 생성하는 모델예측제어(model predictive control) 프레임워크를 제안한다. 실험을 통해, 제안된 프레임워크가 하나의 참조 동작만으로 외력에 대해 강인하게 반응하는 동작을 생성하고, 배경 음악에 따라 리드미컬한 동작을 생성하는데 효과적임을 보여준다.

This paper presents a novel on-line trajectory optimization framework based on automatic time warping, which performs the time warping of a reference motion while optimizing character motion control. Unlike existing physics-based character animation methods where sampling times for a reference motion are uniform or fixed during optimization in general, our method considers the change of sampling times on top of the dynamics of character motion in the same optimization, which allows the character to effectively respond to external pushes with optimal time warping. In order to do so, we formulate an optimal control problem which takes into account both the full-body dynamics and the change of sampling time for a reference motion, and present a model predictive control framework that produces an optimal control policy for character motion and sampling time by repeatedly solving the problem for a fixed-span time window while shifting it along the time axis. Our experimental results show the robustness of our framework to external perturbations and the effectiveness on rhythmic motion synthesis in accordance with a given piece of background music.

키워드

참고문헌

  1. Tassa Y., Erez T., Todorov E.: Synthesis and stabilization of complex behaviors through online trajectory optimization. In Intelligent Robots and Systems (IROS), 2012 IEEE/RSJ International Conference on (2012), IEEE, pp. 4906-4913.
  2. Han, Daseong, Haegwang Eom, and Junyong Noh. "Data‐guided Model Predictive Control Based on Smoothed Contact Dynamics." Computer Graphics Forum. Vol. 35. No. 2. 2016.
  3. da Silva, Marco, Yeuhi Abe, and Jovan Popovic. "Interactive simulation of stylized human locomotion." ACM Transactions on Graphics (TOG) 27.3 (2008): 82. https://doi.org/10.1145/1360612.1360681
  4. Kwon, Taesoo, and Jessica Hodgins. "Control systems for human running using an inverted pendulum model and a reference motion capture sequence." Proceedings of the 2010 ACM SIGGRAPH/Eurographics Symposium on Computer Animation. Eurographics Association, 2010.
  5. Han, Daseong, et al. "On-line real-time physics-based predictive motion control with balance recovery." Computer Graphics Forum. Vol. 33. No. 2. 2014.
  6. Todorov E.: Convex and analytically-invertible dynamics with contacts and constraints: Theory and implementation in mujoco. In IEEE Conference on Robotics and Automation (ICRA) (2014).
  7. Witkin, Andrew, and Zoran Popovic. "Motion warping." Proceedings of the 22nd annual conference on Computer graphics and interactive techniques. ACM, 1995.
  8. Hsu, Eugene, Marco da Silva, and Jovan Popovic. "Guided time warping for motion editing." Proceedings of the 2007 ACM SIGGRAPH/Eurographics symposium on Computer animation. Eurographics Association, 2007.
  9. Rose, Charles, Michael F. Cohen, and Bobby Bodenheimer. "Verbs and adverbs: Multidimensional motion interpolation." IEEE Computer Graphics and Applications 18.5 (1998): 32-40. https://doi.org/10.1109/38.708559
  10. Park, Sang Il, et al. "On-line motion blending for real‐time locomotion generation." Computer Animation and Virtual Worlds 15.3-4 (2004): 125-138. https://doi.org/10.1002/cav.15
  11. Liu, C. Karen, Aaron Hertzmann, and Zoran Popovic. "Composition of complex optimal multi-character motions." Proceedings of the 2006 ACM SIGGRAPH/Eurographics symposium on Computer animation. Eurographics Association, 2006.
  12. Raibert, Marc H., and Jessica K. Hodgins. "Animation of dynamic legged locomotion." ACM SIGGRAPH Computer Graphics. Vol. 25. No. 4. ACM, 1991.
  13. Hodgins, Jessica K., et al. "Animating human athletics." Proceedings of the 22nd annual conference on Computer graphics and interactive techniques. ACM, 1995.
  14. Yin, KangKang, Kevin Loken, and Michiel van de Panne. "Simbicon: Simple biped locomotion control." ACM Transactions on Graphics (TOG). Vol. 26. No. 3. ACM, 2007.
  15. Pratt, Jerry, Chee-Meng Chew, Ann Torres, Peter Dilworth, and Gill Pratt. "Virtual model control: An intuitive approach for bipedal locomotion." The International Journal of Robotics Research 20, no. 2 (2001): 129-143. https://doi.org/10.1177/02783640122067309
  16. Coros, Stelian, Philippe Beaudoin, and Michiel van de Panne. "Generalized biped walking control." ACM Transactions on Graphics (TOG). Vol. 29. No. 4. ACM, 2010.
  17. Wu, Jia-chi, and Zoran Popovic. "Terrain-adaptive bipedal locomotion control." ACM Transactions on Graphics (TOG) 29.4(2010): 72.
  18. Coros, Stelian, Andrej Karpathy, Ben Jones, Lionel Reveret, and Michiel Van De Panne. "Locomotion skills for simulated quadrupeds." In ACM Transactions on Graphics (TOG), vol. 30, no. 4, p. 59. ACM, 2011.
  19. Peng, Xue Bin, Glen Berseth, and Michiel van de Panne. "Dynamic terrain traversal skills using reinforcement learning." ACM Transactions on Graphics (TOG) 34.4 (2015): 80.
  20. Muico, Uldarico, Yongjoon Lee, Jovan Popovic, and Zoran Popovic. "Contact-aware nonlinear control of dynamic characters." In ACM Transactions on Graphics (TOG), vol. 28, no. 3, p. 81. ACM, 2009..
  21. Muico, Uldarico, Jovan Popovic, and Zoran Popovic. "Composite control of physically simulated characters." ACM Transactions on Graphics (TOG) 30.3 (2011): 16.
  22. Ye, Yuting, and C. Karen Liu. "Optimal feedback control for character animation using an abstract model." ACM Transactions on Graphics (TOG). Vol. 29. No. 4. ACM, 2010.
  23. da Silva M., Abe Y., Popovic J.: Simulation of human motion data using short-horizon model-predictive control. In Computer Graphics Forum (2008), vol. 27, Wiley Online Library, pp. 371-380. https://doi.org/10.1111/j.1467-8659.2008.01134.x
  24. Mordatch, Igor, Martin De Lasa, and Aaron Hertzmann. "Robust physics-based locomotion using low-dimensional planning." ACM Transactions on Graphics (TOG). Vol. 29. No. 4. ACM, 2010.
  25. Jacobson D., Mayne D.: Differential dynamic programming.
  26. Featherstone, Roy. "Rigid body dynamics algorithms (Vol. 49)." Springer Berlin 3.6 (2008): 7.
  27. Stewart, David E., and Jeffrey C. Trinkle. "An implicit timestepping scheme for rigid body dynamics with inelastic collisions and coulomb friction." International Journal for Numerical Methods in Engineering 39.15 (1996): 2673-2691. https://doi.org/10.1002/(SICI)1097-0207(19960815)39:15<2673::AID-NME972>3.0.CO;2-I
  28. Tassa, Yuval, Nicolas Mansard, and Emo Todorov. "Controllimited differential dynamic programming." Robotics and Automation (ICRA), 2014 IEEE International Conference on. IEEE, 2014.
  29. Guenter, Brian. "Efficient symbolic differentiation for graphics applications." ACM Transactions on Graphics (TOG) 26.3 (2007): 108. https://doi.org/10.1145/1276377.1276512
  30. Kim, Tae-hoon, Sang Il Park, and Sung Yong Shin. "Rhythmicmotion synthesis based on motion-beat analysis." ACM Transactions on Graphics (TOG). Vol. 22. No. 3. ACM, 2003.