DOI QR코드

DOI QR Code

Numerical Simulation on the Effects of Air Staging for Pulverized Coal Combustion in a Tangential-firing Boiler

접선연소식 보일러에서 미분탄 연소 시 공기 배분의 영향에 대한 전산해석연구

  • Kang, Kieseop (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Ryu, Changkook (School of Mechanical Engineering, Sungkyunkwan University)
  • 강기섭 (성균관대학교 기계공학부) ;
  • 류창국 (성균관대학교 기계공학부)
  • Received : 2016.10.15
  • Accepted : 2017.05.22
  • Published : 2017.08.01

Abstract

This study investigated the influence of air staging on combustion and NOx emission in a tangential-firing boiler at a 560 MWe capacity. For air staging, the stoichiometric ratio (SR) for the burner zone was varied from 0.995 to 0.94 while the overall value was fixed at 1.2. The temperature and heat flux in the burner zone and upper furnace corresponded to the distribution of SR, while the total boiler efficiency remained similar. The NOx emission at the furnace exit was reduced by up to 20% when the SR in the burner zone decreased to 0.94. However, the amount of unburned carbon and slagging propensity was not noticeably influenced by the changes in the SR of the burner zone. Therefore, it was favorable to lower the SR of the burner zone for reduction of NOx emission.

본 연구는 560 MWe급 접선연소식 미분탄 보일러에서 공기단계연소에 의한 연소 및 NOx 배출 특성과 슬래깅성에 대하여 분석한 것이다. 이를 위해 고급 석탄 연소 모델이 적용된 전산유체역학(CFD) 시뮬레이션을 이용하여 전체 연소공기의 당량비(SR)는 1.2로 고정하고, 버너 영역의 SR을 0.94에서 0.995까지 변화시켰다. 공기 배분의 변화에 따라 버너 영역 및 열교환기의 온도 및 전열량 분포가 변하지만 보일러의 전체 효율은 거의 동일하게 나타났다. 버너 영역의 SR이 0.94로 낮아지면 Fuel NO의 생성이 억제되어 절탄기 출구 NOx 배출량은 20% 감소하나, 미연분과 슬래깅성에는 큰 영향이 나타나지 않았다. 따라서, 이 보일러에서 NOx 배출 저감을 위해 공기배분을 조절하여 버너 영역의 SR를 낮추고 상부연소공기(OFA)의 값을 높여 운전하는 것이 타당함을 확인하였다.

Keywords

References

  1. Seo, S. I., Park, H. Y. and Lee, S. N., "Computational Studies on the Combustion and Thermal Performance of the Coal Fired Utility Boiler : Temperature and Thermal Energy Distribution," Korean J. Air-Cond. Refrig. Eng., 21, 157-166(2009).
  2. Okazaki, K. and Ando, T., "NOx Reduction Mechanism in Coal Combustion with Recycled $CO_2$," Energy., 22, 207-215(1997). https://doi.org/10.1016/S0360-5442(96)00133-8
  3. Man, C. K., Gibbins, J. R., Witkamp, J. G. and Zhang, J., "Coal Characterization for NOx Prediction in Air-Staged Combustion of Pulverized Coals," Fuel, 84, 1290-1295(2005).
  4. Molina, A., Eddings, E. G., Pershing, D. W. and Sarofim, A. F., "Char Nitrogen Conversion: Implication to Emissions from Coal-Fired Utility Boilers," Prog. Energy Combust. Sci., 26, 507-531(2000). https://doi.org/10.1016/S0360-1285(00)00010-1
  5. Chae, J. O., Chun, Y. N. and Yi, U. Y., "A Study of NOx Reduction in Stage Combustion," Trans. Korean Soc. Mech. Eng. B, 17, 1556-1571(1993).
  6. Jang, G. H., Chang, I. G., Jeoung, S. Y., Sun, C. Y. and Chon, M. H., "An Experiment Study on NOx Reduction in Pulverized Coal Combustion," Trans. Korean Soc. Mech. Eng. B, 1, 724-729(1999).
  7. Yang, J., Sun, R, Sun, S., Zhao, N., Hao, N., Chen, H., Wang, Y., Guo, H. and Meng, J., "Experimental Study on NOx Reduction from Staging Combustion of High Volatile Pulverized Coals. Part 1. Air Staging," Fuel Process. Technol., 126, 266-275(2014). https://doi.org/10.1016/j.fuproc.2014.04.034
  8. Fan, W., Lin, Z., Kuang, J. and Li, Y., "Impact of Air Staging along Furnace Height on NOx Emissions from Pulverized Coal Combustion," Fuel Process. Technol., 91, 625-634(2010). https://doi.org/10.1016/j.fuproc.2010.01.009
  9. Jang, G. H., Chang, I. G., Sun, C. Y., Chon, M. H., and Yang, G. M., "Effect of Air Staging on NOx Reduction in Pulverized Coal Combustion," J. Korean Soc. Combust., 1, 149-154(1999).
  10. Sung, Y. M., Moon, C. H, Eom, S. Y., Choi, G. M., and Kim. D. J., "Coal-particle Size Effects on NO Reduction and Burnout Characteristics with Air-staged Combustion in a Pulverized Coalfired Furnace," Fuel, 182, 558-567(2016). https://doi.org/10.1016/j.fuel.2016.05.122
  11. Bris, T. L., Cadavid, F., Caillat, S., Pietrzyk, S., Blondin, J. and Baudoin, B., "Coal Combustion Modelling of Large Power Plant, for NOx Abatement," Fuel, 86, 2213-2220(2007). https://doi.org/10.1016/j.fuel.2007.05.054
  12. Li, S., Xu, T., Hui, S., and Wei, X., "NOx Emission and Thermal Efficiency of a 300 MWe Utility Boiler Retrofitted by Air Staging," Appl. Energy., 86, 1797-1803(2009). https://doi.org/10.1016/j.apenergy.2008.12.032
  13. Diez, L. I., Corte, C., and Pallare, J., "Numerical Investigation of NOx Emissions from a Tangentially-fired Utility Boiler under Conventional and Over Fire Air Operation," Fuel, 87, 1259-1269(2008). https://doi.org/10.1016/j.fuel.2007.07.025
  14. Seo, S. I., Park, H. Y., Kang, D. S. and Jeong, D. H., "Combustion Characteristics of Coal-Fired Boiler Depending on the Variations in Combustion Air Supply Method," Energy Eng. J., 19, 156-162(2010).
  15. Yoon, M. J., Lee, B. H., Song, J. H., Kim, G. B., Chang, Y. J. and Jeon, C. H., "Numerical Study of the Optimization of Combustion and Emission Characteristics of Air-staged Combustion in a Pulverized Coal-fired Boiler," Trans. Korean Soc. Mech. Eng. B, 34, 587-597(2010). https://doi.org/10.3795/KSME-B.2010.34.6.587
  16. Kokkinos, A., Wasyluk, D., Brower, M. and Barna, J. J., "Reducin NOx Emissions in Tangentially-Fired Boilers - A New Approach," ASME International Joint Power Generation Conference, 2000.
  17. Kang, K. T., Song, J. H., Yoon, M. J., Lee, B. H., Kim, S. M., Chang, Y. J. and Jeon, C. H., "A Numerical Study on the Effects of SOFA on NOx Emission Reduction in 500 MW Class Sub-bituminous Coal-fired Boiler," Trans. Korean Soc. Mech. Eng. B, 11, 858-868(2009).
  18. Lee, S. H., Park, S. C., Yim, Y. J. and Kim, H. T., "A Study on the Deposit Formation of Coal Ash," Korean Chem. Eng. Res., 34(1), 8-16(1996).
  19. Lee, S. H., Lim, H., Kim, S. D. and Jeon, C. H., "A Study on Ash Fusibility Temperature of Domestic Thermal Coal Implementing Thermo-Mechanical Analysis," Korean Chem. Eng. Res., 52(2), 233-239(2014). https://doi.org/10.9713/kcer.2014.52.2.233
  20. Barnes, D. I., "Slagging and Fouling in Coal-fired Boilers," CCC/147, IEA Clean Coal Centre, London UK, 43(2009).
  21. Jung, B. J., "Sintering characteristics of Low-rank Coal Ashes," Korean J. Chem. Eng., 13(6), 633-639(1996). https://doi.org/10.1007/BF02706031
  22. Scott, D. H., "Ash Behaviour during Combustion and Gasification," Energy Fuels, 15, 502-502(2001).
  23. Wang, H. and Harb, J., "Modeling of Ash Deposition in Large-scale Combustion Facilities Burning Pulverized Coal," Prog. Energy Combust. Sci., 23, 267-282(1997). https://doi.org/10.1016/S0360-1285(97)00010-5
  24. Srinivasachar, S., Helble, J., and Boni, A., "An Experimental Study of the Inertial Deposition of Ash under Coal Combustion Conditions," 23rd Symposium (International) on Combustion, 23, 1305-1312(1991).
  25. Lee, B. H., Kim, S. I., Kim, S, M., Oh, D. H., Gupta, S. and Jeon, C. H., "Ash Deposition Characteristics of Moolarben Coal and its Blends during Coal Combustion," Korean J. Chem. Eng., 33(1), 147-153(2016). https://doi.org/10.1007/s11814-015-0108-9
  26. Modlinski, N. J., "Computational Modeling of a Tangentially Fired Boiler with Deposit Formation Phenomena," Chem. Eng. J., 35, 361-368(2014).
  27. Niksa, S., PC Coal Lab version 4.1: User Guide and Tutorial, Niksa Energy Associates LLC, Belmont, CA, United States, 1997.
  28. Jones, W. P. and Lindstedt, R. P., "Global Reaction Schemes for Hydrocarbon Combustion," Combust Flame., 73, 233-249(1988). https://doi.org/10.1016/0010-2180(88)90021-1
  29. Magnussen, B. F. and Hjertager, B. H., "On Mathematical Models of Turbulent Combustion with Special Emphasis on Soot Formation and Combustion," 16th Symposium (International) on Combustion., 16, 719-729(1976).
  30. Wen, C. Y. and Chaung, T. Z., "Entrainment Coal Gasification Modeling," Ind. Eng. Chem. Process Des. Dev., 18, 684-695(1979). https://doi.org/10.1021/i260072a020
  31. Garba, M. U., Ingham, D. B., Ma, L., Degereji, M. U., Pourkashanian, M. and A, Williams, "Modelling of Deposit Formation and Sintering for the Co-combustion of Coal with Biomass," Fuel, 113, 863-872(2013). https://doi.org/10.1016/j.fuel.2012.12.065
  32. Kalmanovitch, D. P. and Frank, M., "An Effective Model of Viscosity for Ash Deposition Phenomena," Proceedings of Mineral Matter and ash deposition from coal, United Engineering Trustees Inc Santa Barbara, 89-101(1988).
  33. Srinivasachar, S., Senior, C. L., Helble, J. J. and Moore, J. W., "A Fundamental Approach to the Prediction of Coal Ash Deposit Formation in Combustion Systems," 16th Symposium (International) on Combustion, 1, 1179-1187(1992).