• Title/Summary/Keyword: Tangential-firing boiler

Search Result 4, Processing Time 0.026 seconds

Assessment of the influence of coal combustion model and turbulent mixing rate in CFD of a 500 MWe tangential-firing boiler (500 MWe급 접선 연소 보일러 해석시 난류 혼합 속도 및 석탄 연소 모델의 영향 평가)

  • Yang, Joo-Hyang;Kang, Kie-Seop;Ryu, Changkook
    • 한국연소학회:학술대회논문집
    • /
    • 2015.12a
    • /
    • pp.69-72
    • /
    • 2015
  • Computational fluid dynamics (CFD) modeling of large-scale coal-fired boilers requires a complicated set of flow, heat transfer and combustion process models based on different degrees of simplification. This study investigates the influence of coal devolatilization, char conversion and turbulent gas reaction models in CFD for a tangential-firing boiler at 500MWe capacity. Devolatilization model is found out not significant on the overall results, when the kinetic rates and the composition of volatiles were varied. In contrast, the turbulence mixing rate influenced significantly on the gas reaction rates, temperature, and heat transfer rate on the wall. The influence of char conversion by the unreacted core shrinking model (UCSM) and the 1st-order global rate model was not significant, but the unburned carbon concentration was predicted in details by the UCSM. Overall, the effects of the selected models were found similar with previous study for a wall-firing boiler.

  • PDF

A Numerical Study on the $NO_{x}$ Reduction in 500MW Pulverized Coal Tangential Firing Boiler (500MW급 접선분사형 미분탄보일러의 $NO_{x}$ 저감에 관한 수치해석적 연구)

  • Choi, Choeng-Ryul;Kang, Dae-Woong;Kim, Chang-Nyung;Park,, Man-Heung;Kim, Kwang-Chu;Kim, Jong-Kill
    • Proceedings of the KSME Conference
    • /
    • 2001.06d
    • /
    • pp.967-972
    • /
    • 2001
  • The emission of $NO_{x}$ during coal combustion is a major reason of environment impact. $NO_{x}$ is an acid rain precursor and participates in the generation of smog through ozone production. $NO_{x}$ can be divided into thermal $NO_{x}$, fuel $NO_{x}$ and prompt $NO_{x}$. Thermal $NO_{x}$ is formed in a highly temperature condition dependent. Fuel $NO_{x}$ is dependent on the local combustion characteristics and initial concentration of nitrogen bound compound, while prompt $NO_{x}$ is formed in a significant quantity in some combustion environments, such as low temperature and short residence times. This paper presents numerical simulation of the flow and combustion characteristics in the furnace of a tangential firing boiler of 500MW with burners installed at the every comer of the furnace. The purpose of this paper is to investigate the reduction of $NO_{x}$ emission in a 500MW pulverized coal tangential firing boiler with different OFA's and burner angles. Calculations with different air flow rates of over fired air(OFA) and burner angles are performed.

  • PDF

Numerical Simulation on the Effects of Air Staging for Pulverized Coal Combustion in a Tangential-firing Boiler (접선연소식 보일러에서 미분탄 연소 시 공기 배분의 영향에 대한 전산해석연구)

  • Kang, Kieseop;Ryu, Changkook
    • Korean Chemical Engineering Research
    • /
    • v.55 no.4
    • /
    • pp.548-555
    • /
    • 2017
  • This study investigated the influence of air staging on combustion and NOx emission in a tangential-firing boiler at a 560 MWe capacity. For air staging, the stoichiometric ratio (SR) for the burner zone was varied from 0.995 to 0.94 while the overall value was fixed at 1.2. The temperature and heat flux in the burner zone and upper furnace corresponded to the distribution of SR, while the total boiler efficiency remained similar. The NOx emission at the furnace exit was reduced by up to 20% when the SR in the burner zone decreased to 0.94. However, the amount of unburned carbon and slagging propensity was not noticeably influenced by the changes in the SR of the burner zone. Therefore, it was favorable to lower the SR of the burner zone for reduction of NOx emission.

The Four Power Plants Field Demonstration Research on Combustion Characteristic of the Bio Oil for Fuel Switching (국내 4개 중유발전소 실증실험을 통한 발전연료 대체용 바이오중유의 연소특성 연구)

  • Baek, Sehyun;Kim, Hyunhee;Park, Hoyoung;Kim, Young Joo;Kim, Tae Hyung;Ko, Sung Ho
    • Journal of the Korean Society of Combustion
    • /
    • v.20 no.1
    • /
    • pp.15-23
    • /
    • 2015
  • This paper presents the results of field demonstration for fuel switching to bio-fuel oil in 4 commercial heavy oil fired power plants. The 100% fuel switching field demonstration was successfully carried out in two tangential-firing boilers at a capacity of 75 and 100 MWe respectively without major equipment retrofit, and also 25% bio-fuel oil blending for two opposite firing boilers at a capacity of 350 and 400 MWe respectively. Despite the low density and heating value, the bio fuel was successfully replaced heavy fuel oil at the full load by only adjusting operational parameters. Incase of bio fuel oil combustion, heat absorption of radiative heat transfer section was reduced while convection section has opposite trend. In pollutants emission, a major reductionin SOx as well as 10-20% reduction in NOx were achieved by the fuels witching. On the other hand, boiler efficiency was slightly underestimated.