DOI QR코드

DOI QR Code

Analysis of Particle Morphology Change and Discrete Element Method (DEM) with Different Grinding Media in Metal-based Composite Fabrication Process Using Stirred Ball Mill

교반볼밀을 이용한 금속기반 복합재 제조공정에서 다른 분쇄매체차이에 대한 입자형상변화와 DEM 시뮬레이션 해석

  • Batjargal, Uyanga (Engineering Research Center (ERC) for Integrated Mechatronics Materials and Components, Changwon National University) ;
  • Bor, Amgalan (Engineering Research Center (ERC) for Integrated Mechatronics Materials and Components, Changwon National University) ;
  • Batchuluun, Ichinkhorloo (Engineering Research Center (ERC) for Integrated Mechatronics Materials and Components, Changwon National University) ;
  • Lee, Jehyun (Engineering Research Center (ERC) for Integrated Mechatronics Materials and Components, Changwon National University) ;
  • Choi, Heekyu (Graduate School of Material Science Engineering, Changwon National University)
  • 오양가 (창원대학교 메카트로닉스 융합부품소재 연구센터(ERC)) ;
  • 보르 암갈란 (창원대학교 메카트로닉스 융합부품소재 연구센터(ERC)) ;
  • 바춘흘루 이치커 (창원대학교 메카트로닉스 융합부품소재 연구센터(ERC)) ;
  • 이재현 (창원대학교 메카트로닉스 융합부품소재 연구센터(ERC)) ;
  • 최희규 (창원대학교 대학원 금속신소재공학과)
  • Received : 2017.02.16
  • Accepted : 2017.03.31
  • Published : 2017.08.01

Abstract

This work investigated the particle morphology change to difference in milling media in a metal based composite fabrication process using a stirred ball mill with ball behavior of DEM simulation. A simulation of the three dimensional motion of grinding media in the stirred ball mill for the research of grinding mechanism to clarify the force, kinetic energy, and medium velocity of grinding media were calculated. In addition, the rotational speed of the stirred ball mill was changed to the experimental conditions for the composite fabrication, and change of the input energy was also calculated while changing the ball material, the flow velocity, and the friction coefficient under the same conditions. As the rotating speed of the stirred ball mill increased, the impact energy between the grinding media to media, media to wall, and media and the stirrer increased quantitatively. Also, we could clearly analyze the change of the particle morphology under the same experimental conditions, and it was found that the ball behavior greatly influences in the particle morphology changes.

이 연구는 교반볼밀을 이용한 금속기반 복합재 제조공정에 있어서 분쇄매체의 차이에 의한 입자형상의 변화를 관찰하고, 볼 거동의 DEM시뮬레이션을 행하였다. 교반볼밀에서 볼 거동의 3차원 시뮬레이션을 통해 분쇄메커니즘을 규명하기 위하여 분쇄매체의 힘, 운동에너지, 매체 운동속도 등을 계산하였다. 또한 복합재 제조를 위한 실험조건을 이전의 다른 볼밀에서에 같이 교반볼밀 회전속도를 변화시켰고, 볼 재질, 운동속도, 마찰계수 등도 동일한 조건으로 변화시키면서 투입되는 에너지의 변화량도 계산하였다. 교반볼밀의 회전속도가 증가함에 따라, 분쇄매체와 매체, 매체와 벽면, 그리고 매체와 교반기 사이의 충격에너지가 증가하는 것을 정량적으로 계산 할 수 있었다. 또한 같은 실험 조건에서 입자형상 변화를 명확하게 분석 할 수 있었으며, 볼 거동이 입자형상 변화에 매우 큰 영향을 미치는 것을 알 수 있었다.

Keywords

References

  1. Mikli, V., Kaerdi, H., Kulu, P. and Besterci, M., "Characterization of Powder Particle Morphology," Proc. Estonian Acad. Sci. Eng., 7(1), 22-34(2001).
  2. Pavlovic, M. G., Pavlovic, L. J., Maksimovic, V. M., Nikolic, N. D. and Popov, K. I., "Characterization and Morphology of Copper Powder Particles as a Function of Different Electrolytic Regimes," Int. J. Electrochemical Sci., 5, 1862-1878(2010).
  3. Lee, G. G., Hashimoto, H. and Watanabe, R., "Development of Particle Morphology during Dry Ball Milling of Cu Powder," Mater. Trans., JIM, 36, 548-554(1995). https://doi.org/10.2320/matertrans1989.36.548
  4. Chikosha, S., Shabalala, T. C. and Chikwanda, H. K., "Effect of Particle Morphology and Size on Roll Compaction of Ti-Based Powders," Powder Technol., 264, 310-319(2014). https://doi.org/10.1016/j.powtec.2014.05.033
  5. Choi, H., Lee, W., Kim, D. U., Kumar, S., Ha, J., Kim, S. S. and Lee, J. H., "A Comparative Study of Particle Size Analysis in Fine Powder: The Effect of a Polycomponent Particulate System," Korean J. Chem. Eng., 26(1), 300-305(2009). https://doi.org/10.1007/s11814-009-0052-7
  6. Batchuluun, I., Bor, A., Uyanga, B., Lee, J. and Choi, H., "Particle Morphology Change and Different Experimental Condition Analysis during Composites Fabrication Process by Conventional Ball Mill with Discrete Element Method (DEM) Simulation," Korean J. Mater. Res., 26(11), 611-622(2016). https://doi.org/10.3740/MRSK.2016.26.11.611
  7. Kim, S., Choi, J. Y. and Shin, H., "Design and Analysis of Mixture Experiments for Ball Mix Selection in the Ball Milling," J. Korean Soc. Qual. Manag., 42(2), 579-590(2014). https://doi.org/10.7469/JKSQM.2014.42.4.579
  8. Shin, H., Fundamentals of Ceramic Engineering, Books Hill, (2009).
  9. Shin, H., Lee, S., Jung, H. S. and Kim, J. B., "Effect of Ball Size And Powder Loading on the Milling Efficiency of a Laboratory-scale Wet Ball Mill," Ceram. Int., 39, 8963-8968(2013). https://doi.org/10.1016/j.ceramint.2013.04.093
  10. Choi, H., Kim, S. and Hwang, J. Y., "Grinding Kinetics of Calcite, Pyrophyllite and Talc during Stirred Ball Milling-Consideration of Selection Function," J. Miner. Soc. Korea, 20(2), 135-145(2007).
  11. Choi, H. and Wang, L., "A Quantitative Study of Grinding Characteristics on Particle Size and Grinding Consumption Energy by Stirred Ball Mill," Korean J. Mater. Res., 17(10), 532-537(2007). https://doi.org/10.3740/MRSK.2007.17.10.532
  12. Choi, H., Lee, W. and Kim, S., "Effect of Grinding Aid on the Kinetics of Fine Grinding Energy Consumed of Calcite Powders by a Stirred Ball Mill," Adv. Powder Technol., 20, 305-354(2009).
  13. Jayasundara, C. T., Yang, R. Y. and Yu, A.B., "Effect of the Size of Media on Grinding Performance in Stirred Ball Mills," Miner. Eng., 33, 66-71(2012). https://doi.org/10.1016/j.mineng.2011.10.012
  14. Choi, H. and Wang, L., "A Quantitative Study of Grinding Characteristics on Particle Size and Grinding Consumption Energy by Stirred Ball Mill," Korean J. Mater. Res., 17(10), 532-537(2007). https://doi.org/10.3740/MRSK.2007.17.10.532
  15. Choi, H., Lee, W., Kim, S. and Chung, H., "Effect of the Sample Concentration on the Submicrometer Particles Produced During a Stirred Ball Milling of Calcite Powders," Int. J. Appl. Technol., 8(5), 1147-1152(2011). https://doi.org/10.1111/j.1744-7402.2010.02548.x
  16. Sakuragi, S., Bor, A., Lee, J. and Choi, H., "Particle Morphology via Change of Ground Particle for Various Experimental Conditions During a Grinding Process by Three Kinds of Media Mills," Par. Aerosol Res., 11(1), 9-19(2015). https://doi.org/10.11629/jpaar.2015.11.1.009
  17. Bor, A., Sakuragi, S., Lee, J. and Choi, H., "Comparative Study for Standardization of Grinding Equipment During Dry Grinding Process by Various Grinding Mills," Korean J. Mater. Res., 25(6), 305-316(2015). https://doi.org/10.3740/MRSK.2015.25.6.305
  18. Park, Y. H., Jeong, H. Y., Lee, B. W., Kim, S. K., Kim, W. Y. and Bae, C. H., "An Analysis of Mechanical Alloying Process of Vibratory Ball Milling by Model Simulation," Korean Inst. Met. Mater., 34(7), 896-907(1996).
  19. Ryu, H., "Simulation Balls' Motion and Kinetic Energy in a Tumbling Ball Mill," Korean J. Mater. Res., 7(4), 339-346(1997).
  20. Mori, H., Mio, H., Kano, J. and Saito, F., "Ball Mill Simulation in Wet Grinding Using a Tumbling Mill and Its Correlation to Grinding Rate," Powder Technol., 143, 230-239(2004).
  21. Kim, S. S., Park, G. T., Chung, H. S. and Choi, H. K., "Power Calculation for a Stirrer Ball Mill Using DEM Simulation," Korean Soc. Mech. Eng., 5, 154-157(2008).
  22. Choi, H., Kim, S. and Hwang, J. Y., "Grinding Kinetics of Calcite, Porophyllite and Talc During Stirred Ball Milling-Consideration of Selection Function," J. Miner. Soc. Korea, 20(2), 135-145(2007).
  23. Sim, C. H., "Optimization of Process Variables for Insulation Coating of Conductive Particles by Response Surface Methodology," Korean Chem, Eng. Res., 54(1), 44-51(2016). https://doi.org/10.9713/kcer.2016.54.1.44

Cited by

  1. 교반볼밀을 이용한 밀링공정에서 각종실험조건에 따른 구리분말의 입자형상 변화 및 DEM 시뮬레이션에 의한 정량적 에너지 변화 vol.28, pp.3, 2017, https://doi.org/10.3740/mrsk.2018.28.3.148