DOI QR코드

DOI QR Code

Numerical Modeling of Wave-Type Turbulent Flow on a Stepped Weir

계단형 보에서의 파형 난류 흐름 수치모의

  • 백중철 (강릉원주대학교 토목공학과) ;
  • 이남주 (경성대학교 건설환경도시공학부) ;
  • 윤영호 (강원도립대학교 재난안전토목과)
  • Received : 2017.05.09
  • Accepted : 2017.05.16
  • Published : 2017.06.01

Abstract

Various types of flow patterns around the stepped weir and spillway, such as the skimming flow over such structures and the wave-type flow with a standing undular hydraulic jump and roller downstream of the structures, are developed in open channels. Unsteady three-dimensional numerical simulations are carried out using a hybrid RANS-LES turbulence modeling approach and the volume of fluid method for resolving free surface fluctuations to represent the turbulent flow including the skimming flow and wave-type flow over a stepped weir installed in a rectangular channel. The comparison of numerical results with an existing experimental measurement reveals that the present numerical simulations reasonably well reproduce the turbulent flow passing the stepped weir, in terms of time-averaged velocity profiles at selected locations downstream of the weir, flow topology characterized by the wave-type and skimming flows, the maximum height and length of the standing wave and the length of reattachment of recirculating zone. The numerical result further elucidates the distinct flow behaviors of the wave-type and skimming flow by presenting instantaneous intense variations of free surface and velocity vectors, the distributions of Reynolds shear stress and turbulent kinetic energy and three-dimensional complex features of coherent structures and total pressure distribution.

계단형 보와 여수로 같은 수공구조물의 상부에서는 스키밍 흐름 그리고 직하류부에서는 정상파를 포함하는 도수 현상인 파형흐름과 같이 다양한 형태의 흐름이 발생한다. 연구에서는 하이브리드 RANS-LES 난류 모델링 기법과 자유수면 변동을 해석하기 위한 VOF (volume of fluid)기법을 병합한 3차원 부정류 수치모형을 이용하여 계단형 보가 설치된 사각형 개수로에서 발생하는 파형흐름과 스키밍 흐름을 포함하는 난류흐름을 수치모의 하였다. 시간평균 수치모의 결과와 기존 수리모형 실험 결과를 비교분석한 결과, 수치모의는 보 하류부에서의 평균유속분포의 변화, 정체파와 수면와류를 포함하는 파형흐름의 전반적인 수면 변화, 파형흐름의 파고와 길이, 정체파 하부에서 발생하는 재순환 흐름 영역의 길이 등을 양호하게 잘 재현하는 것으로 나타났다. 수치모의를 통해서 자유수면과 순간 유속 벡터의 변동, 전단응력과 난류에너지의 분포 그리고 3차원 난류조직구조와 총압력분포의 형태와 변동 자료를 제시하여 스키밍 흐름과 파형흐름 영역에서의 독특한 흐름 거동 특성을 규명하였다.

Keywords

References

  1. Akoz, M. S., Gumus, V. and Kirkgoz, M. S. (2014). "Numerical simulation of flow over a semicylinder weir." J Irrig. Drain. Eng., Vol. 140, No. 6, 04014016. https://doi.org/10.1061/(ASCE)IR.1943-4774.0000717
  2. Chanson, H. (1994). "Hydraulics of skimming flows over stepped channels and spillways." J. Hydraul. Res., Vol. 32, No. 3, pp. 445-460. https://doi.org/10.1080/00221689409498745
  3. Chanson, H. (2000). "A review of accidents and failures of stepped spillways and weirs." Proc. Instn Civ. Engrs Water and Maritime Engrg, UK, Vol. 142, pp. 177-188.
  4. Hager, W. H. (1992). "Energy Dissipators and Hydraulic Jump." Water Science and Technology Library, Vol. 8, Kluwer Academic Publishers, Dordrecht, The Netherlands. p. 115-117.
  5. Kang, J. G., Yeo, H. K., Lee, K. C. and Choi, N. J. (2010). "Experimental study on flow characteristic and wave type flow at downstream of stepped weir." J. Korea Water Resour. Assoc., Vol. 43, No. 1, pp. 41-49. https://doi.org/10.3741/JKWRA.2010.43.1.41
  6. Kawagoshi, N. and Hager, W. H. (1990). "Wave type flow at abrupt drops." J. Hydraul. Res., Vol. 28, No. 2, pp. 235-252. https://doi.org/10.1080/00221689009499088
  7. Paik, J. and Lee, N. J. (2015). "Numercial modeling of free suface flow over a broad-crested retangular weir." J. Korea Water Resources Assoc., Vol. 48, No. 4, pp. 281-290. https://doi.org/10.3741/JKWRA.2015.48.4.281
  8. Paik, J., Sotiropoulos, F. and Forte-Agel, F. (2009). "Detached eddy simulation of flow around two wall-mounted cubes in tandem." Int. J. Heat Fluid Flow, Vol. 30, pp. 286-305. https://doi.org/10.1016/j.ijheatfluidflow.2009.01.006
  9. Qu, J., Ramamurthy, A. S., Tadayon, R. and Chen, Z. (2009). "Numerical simulation of sharp-crested weir flows." Canadian J. Civil Eng., Vol. 36, No. 9, pp. 1530-1534. https://doi.org/10.1139/L09-067
  10. Rajaratnam, N. (1990). "Skimming flow in stepped spillways." J. Hydraul. Engrg., Vol. 116, No. 4, pp. 587-591. https://doi.org/10.1061/(ASCE)0733-9429(1990)116:4(587)
  11. Shur, M. L., Spalart, P. R., Strelets, M. Kh. and Travin, A. K. (2008). "A hybrid RANS-LES approach with delayed-DES and wallmodelled LES capabilities." Int. J. Heat Fluid Flow, Vol. 29, pp. 1638-1649. https://doi.org/10.1016/j.ijheatfluidflow.2008.07.001
  12. Spalart, P. R., Jou, W.-H., Strelets, M. Kn. and Allmaras, S. R. (1997). "Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach." In: Liu, C., Liu, Z. (Eds.), Advances in LES/DNS, First AFOSR International Conference on DNS/LES. Greyden Press, Louisiana Tech University.
  13. Spalart, P. R. (2009). "Detached-eddy simulation." Annu. Rev. Fluid Mech., Vol. 41, pp. 181-202. https://doi.org/10.1146/annurev.fluid.010908.165130
  14. Weller, H. G. (2008). A new approach to VOF-based interface capturing methods for incompressible and compressible flows, Technical Report No. TR/HGW/04.