DOI QR코드

DOI QR Code

Alterations in Striatal Circuits Underlying Addiction-Like Behaviors

  • Kim, Hyun Jin (Department of Life Sciences, Pohang University of Science and Technology (POSTECH)) ;
  • Lee, Joo Han (Department of Life Sciences, Pohang University of Science and Technology (POSTECH)) ;
  • Yun, Kyunghwa (Department of Life Sciences, Pohang University of Science and Technology (POSTECH)) ;
  • Kim, Joung-Hun (Department of Life Sciences, Pohang University of Science and Technology (POSTECH))
  • Received : 2017.05.31
  • Accepted : 2017.07.11
  • Published : 2017.06.30

Abstract

Drug addiction is a severe psychiatric disorder characterized by the compulsive pursuit of drugs of abuse despite potential adverse consequences. Although several decades of studies have revealed that psychostimulant use can result in extensive alterations of neural circuits and physiology, no effective therapeutic strategies or medicines for drug addiction currently exist. Changes in neuronal connectivity and regulation occurring after repeated drug exposure contribute to addiction-like behaviors in animal models. Among the involved brain areas, including those of the reward system, the striatum is the major area of convergence for glutamate, GABA, and dopamine transmission, and this brain region potentially determines stereotyped behaviors. Although the physiological consequences of striatal neurons after drug exposure have been relatively well documented, it remains to be clarified how changes in striatal connectivity underlie and modulate the expression of addiction-like behaviors. Understanding how striatal circuits contribute to addiction-like behaviors may lead to the development of strategies that successfully attenuate drug-induced behavioral changes. In this review, we summarize the results of recent studies that have examined striatal circuitry and pathway-specific alterations leading to addiction-like behaviors to provide an updated framework for future investigations.

Keywords

References

  1. Adamantidis, A.R., Tsai, H.C., Boutrel, B., Zhang, F., Stuber, G.D., Budygin, E.A., Tourino, C., Bonci, A., Deisseroth, K., and de Lecea, L. (2011). Optogenetic interrogation of dopaminergic modulation of the multiple phases of reward-seeking behavior. J. Neurosci. 31, 10829-10835. https://doi.org/10.1523/JNEUROSCI.2246-11.2011
  2. Alcantara, A.A., Chen, V., Herring, B.E., Mendenhall, J.M., and Berlanga, M.L. (2003). Localization of dopamine D2 receptors on cholinergic interneurons of the dorsal striatum and nucleus accumbens of the rat. Brain Res. 986, 22-29. https://doi.org/10.1016/S0006-8993(03)03165-2
  3. Alexander, G.E., DeLong, M.R., and Strick P.L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annu. Rev. Neurosci. 9, 357-381. https://doi.org/10.1146/annurev.ne.09.030186.002041
  4. Amalric, M., and Koob, G.F. (1993). Functionally selective neurochemical afferents and efferents of the mesocorticolimbic and nigrostriatal dopamine system. Prog. Brain Res. 99, 209-226.
  5. Bock, R., Shin, J.H., Kaplan, A.R., Dobi, A., Markey, E., Kramer, P.F., Gremel, C.M., Christensen, C.H., Adrover, M.F., and Alvarez, V.A. (2013). Strengthening the accumbal indirect pathway promotes resilience to compulsive cocaine use. Nat. Neurosci. 16, 632-638. https://doi.org/10.1038/nn.3369
  6. Bolam, J.P., Hanley, J.J., Booth, P.A.C., and Bevan, M.D. (2000). Synaptic organisation of the basal ganglia. J. Anat. 196, 527-542. https://doi.org/10.1046/j.1469-7580.2000.19640527.x
  7. Borgland, S.L., Malenka, R.C., and Bonci, A. (2004). Acute and chronic cocaine-induced potentiation of synaptic strength in the ventral tegmental area: electrophysiological and behavioral correlates in individual rats. J. Neurosci. 24, 7482-7490. https://doi.org/10.1523/JNEUROSCI.1312-04.2004
  8. Bossert, J.M., Stern, A.L., Theberge, F.R., Cifani, C., Koya, E., Hope, B.T., and Shaham, Y. (2011). Ventral medial prefrontal cortex neuronal ensembles mediate context-induced relapse to heroin. Nat. Neurosci. 14, 420-422. https://doi.org/10.1038/nn.2758
  9. Britt, J.P., Benaliouad, F., McDevitt, R.A., Stuber, G.D., Wise, R.A., and Bonci, A. (2012). Synaptic and behavioral profile of multiple glutamatergic inputs to the nucleus accumbens. Neuron 76, 790-803. https://doi.org/10.1016/j.neuron.2012.09.040
  10. Brown, M.T., Tan, K.R., O'Connor, E.C., Nikonenko, I., Muller, D., and Lüscher, C. (2012). Ventral tegmental area GABA projections pause accumbal cholinergic interneurons to enhance associative learning. Nature 492, 452-456. https://doi.org/10.1038/nature11657
  11. Brown, T.E., Lee, B.R., Mu, P., Ferguson, D., Dietz, D., Ohnishi, Y.N., Lin, Y., Suska, A., Ishikawa, M., Huang, Y.H., et al. (2011). A silent synapse-based mechanism for cocaine-Induced locomotor sensitization. J. Neurosci. 31, 8163-8174. https://doi.org/10.1523/JNEUROSCI.0016-11.2011
  12. Cachope, R., Mateo, Y., Mathur, B.N., Irving, J., Wang, H.L., Morales, M., Lovinger, D.M., and Cheer, J.F. (2012). Selective activation of cholinergic interneurons enhances accumbal phasic dopamine release: setting the tone for reward processing. Cell Rep. 2, 33-41. https://doi.org/10.1016/j.celrep.2012.05.011
  13. Caine, S.B., Humby, T., Robbins, T.W., and Everitt, B.J. (2001). Behavioral effects of psychomotor stimulants in rats with dorsal or ventral subiculum lesions : locomotion , cocaine self administration, and prepulse inhibition of startle. Behav. Neurosci. 115, 880-894. https://doi.org/10.1037/0735-7044.115.4.880
  14. Caine, S.B., Negus, S.S., Mello, N.K., Patel, S., Bristow, L., Kulagowski, J., Vallone, D., Saiardi, A., and Borrelli, E. (2002). Role of dopamine D2-like receptors in cocaine self-administration: studies with D2 receptor mutant mice and novel D2 receptor antagonists. J. Neurosci. 22, 2977-2988. https://doi.org/10.1523/JNEUROSCI.22-07-02977.2002
  15. Caine, S.B., Thomsen, M., Gabriel, K.I., Berkowitz, J.S., Gold, L.H., Koob, G.F., Tonegawa, S., Zhang, J., and Xu, M. (2007). Lack of selfadministration of cocaine in dopamine D1 receptor knock-out mice. J. Neurosci. 27, 13140-13150. https://doi.org/10.1523/JNEUROSCI.2284-07.2007
  16. Creed, M., Ntamati, N.R., Chandra, R., Lobo, M.K., and Luscher, C. (2016). Convergence of reinforcing and anhedonic cocaine effects in the ventral pallidum. Neuron 92, 214-226. https://doi.org/10.1016/j.neuron.2016.09.001
  17. Crittenden, J.R., and Graybiel, A.M. (2011). Basal ganglia disorders associated with imbalances in the striatal striosome and matrix compartments. Front. Neuroanat. 5, 1-25.
  18. Dalley, J.W., Cardinal, R.N., and Robbins, T.W. (2004). Prefrontal executive and cognitive functions in rodents: Neural and neurochemical substrates. Neurosci. Biobehav. Rev. 28, 771-784. https://doi.org/10.1016/j.neubiorev.2004.09.006
  19. Dobbs, L.K., Kaplan, A.R., Lemos, J.C., Matsui, A., Rubinstein, M., and Alvarez, V.A. (2016). Dopamine regulation of lateral inhibition between striatal neurons gates the stimulant actions of cocaine. Neuron 90, 1100-1113. https://doi.org/10.1016/j.neuron.2016.04.031
  20. Durieux, P.F., Bearzatto, B., Guiducci, S., Buch, T., Waisman, A., Zoli, M., Schiffmann, S.N., and de Kerchove d'Exaerde, A. (2009). D2R striatopallidal neurons inhibit both locomotor and drug reward processes. Nat. Neurosci. 12, 393-395. https://doi.org/10.1038/nn.2286
  21. Everitt, B.J., and Robbins, T.W. (2005). Neural systems of reinforcement for drug addiction: from actions to habits to compulsion. Nat. Neurosci. 8, 1481-1489. https://doi.org/10.1038/nn1579
  22. Farrell, M.S., Pei, Y., Wan, Y., Yadav, P.N., Daigle, T.L., Urban, D.J., Lee, H.M., Sciaky, N., Simmons, A., Nonneman, R.J., et al. (2013). A Gas DREADD mouse for selective modulation of cAMP production in striatopallidal neurons. Neuropsychopharmacology 38, 854-862. https://doi.org/10.1038/npp.2012.251
  23. Ferguson, S.M., and Neumaier, J.F. (2015). Using DREADDs to investigate addiction behaviors. Curr. Opin. Behav. Sci. 2, 69-72. https://doi.org/10.1016/j.cobeha.2014.09.004
  24. Ferguson, S.M., Eskenazi, D., Ishikawa, M., Wanat, M.J., Phillips, P.E., Dong, Y., Roth, B.L., and Neumaier, J.F. (2011). Transient neuronal inhibition reveals opposing roles of indirect and direct pathways in sensitization. Nat. Neurosci. 14, 22-24. https://doi.org/10.1038/nn.2703
  25. Freund, T.F., Powell, J.F., and Smith, A.D. (1984). Freund Tyrosine hydroxylase immunoreactive boutons in synaptic contact with identified striatonigral neurons with particular reference to dendritic spines. Neuroscience. 13, 1189-1215. https://doi.org/10.1016/0306-4522(84)90294-X
  26. Fuchs, R.A., Weber, S.M., Rice, H.J., and Neisewander, J.L. (2002). Effects of excitotoxic lesions of the basolateral amygdala on cocaineseeking behavior and cocaine conditioned place preference in rats. Brain Res. 929, 15-25. https://doi.org/10.1016/S0006-8993(01)03366-2
  27. Fuchs, R.A., Eaddy, J.L., Su, Z.I., and Bell, G.H. (2007). Interactions of the basolateral amygdala with the dorsal hippocampus and dorsomedial prefrontal cortex regulate drug context-induced reinstatement of cocaine-seeking in rats. Eur. J. Neurosci. 26, 487-498. https://doi.org/10.1111/j.1460-9568.2007.05674.x
  28. Gerfen, C.R., and Surmeier, D.J. (2011). Modulation of striatal projection systems by dopamine. Annu. Rev. Neurosci. 34, 441-466. https://doi.org/10.1146/annurev-neuro-061010-113641
  29. Gerfen, C.R., Engber, T.M., Mahan, L.C., Susel, Z., Chase, T.N, Monsma, F.J.Jr., and Sibley, D.R.(1990). D1 and D2 dopamine receptor-regulated gene expression of striatonigral and striatopallidal neurons. Science 250, 1429-1432. https://doi.org/10.1126/science.2147780
  30. Giorgetti, M., Hotsenpiller, G., Ward, P., Teppen, T., and Wolf, M.E. (2001). Amphetamine-induced plasticity of AMPA receptors in the ventral tegmental area: effects on extracellular levels of dopamine and glutamate in freely moving rats. J. Neurosci. 21, 6362-6369. https://doi.org/10.1523/JNEUROSCI.21-16-06362.2001
  31. Haber, S.N. (2003). The primate basal ganglia: parallel and integrative networks. J. Chem. Neuroanat. 26, 317-330. https://doi.org/10.1016/j.jchemneu.2003.10.003
  32. Hyman, S.E., Malenka, R.C., and Nestler, E.J. (2006). NEURAL MECHANISMS OF ADDICTION: The Role of Reward-Related Learning and Memory. Annu. Rev. Neurosci. 29, 565-598. https://doi.org/10.1146/annurev.neuro.29.051605.113009
  33. Ishikawa, M., Otaka, M., Huang, Y.H., Neumann, P.A., Winters, B.D., Grace, A.A., Schlu, O.M., and Dong, Y. (2013). Dopamine Triggers Heterosynaptic Plasticity. J. Neurosci. 33, 6759-6765. https://doi.org/10.1523/JNEUROSCI.4694-12.2013
  34. Kalivas, P.W. (2009). The glutamate homeostasis hypothesis of addiction. Nat. Rev. Neurosci. 10, 561-572. https://doi.org/10.1038/nrn2515
  35. Kalivas, P.W., and Duffy, P. (1993). Time course of extracellular dopamine and behavioral sensitization to cocaine. I. Dopamine axon terminals. J. Neurosci. 13, 266-275. https://doi.org/10.1523/JNEUROSCI.13-01-00266.1993
  36. Kalivas, P.W., and McFarland, K. (2003). Brain circuitry and the reinstatement of cocaine-seeking behavior. Psychopharmacology (Berl) 168, 44-56. https://doi.org/10.1007/s00213-003-1393-2
  37. Killcross, S., and Coutureau, E. (2003). Coordination of actions and habits in the medial prefrontal cortex of rats. Cereb. Cortex 13, 400-408. https://doi.org/10.1093/cercor/13.4.400
  38. Kim, J., Pignatelli, M., Xu, S., Itohara, S., and Tonegawa, S. (2016). Antagonistic negative and positive neurons of the basolateral amygdala. Nat. Neurosci. 19, 1636-1646. https://doi.org/10.1038/nn.4414
  39. Kincaid, A.E., Zheng, T., and Wilson, C.J. (1998). Connectivity and convergence of single corticostriatal axons. J. Neurosci. 18, 4722-4731. https://doi.org/10.1523/JNEUROSCI.18-12-04722.1998
  40. Koya, E., Uejima, J.L., Wihbey, K.A., Bossert, J.M., Hope, B.T., and Shaham, Y. (2009). Role of ventral medial prefrontal cortex in incubation of cocaine craving. Neuropharmacology 56, 177-185. https://doi.org/10.1016/j.neuropharm.2008.04.022
  41. Koya, E., Cruz, F.C., Ator, R., Golden, S.A., Hoffman, A.F., Lupica, C.R., and Hope, B.T. (2012). Silent synapses in selectively activated nucleus accumbens neurons following cocaine sensitization. Nat. Neurosci. 15, 1556-1562. https://doi.org/10.1038/nn.3232
  42. Kravitz, A.V., Tye, L.D., and Kreitzer, A.C. (2012). Distinct roles for direct and indirect pathway striatal neurons in reinforcement. Nat. Neurosci. 15, 816-818. https://doi.org/10.1038/nn.3100
  43. Lee, B.R., Ma, Y.Y., Huang, Y.H., Wang, X., Otaka, M., Ishikawa, M., Neumann, P.A., Graziane, N. M., Brown, T.E., Suska, A., et al. (2013). Maturation of silent synapses in amygdala-accumbens projection contributes to incubation of cocaine craving. Nat. Neurosci. 16, 1644-1651. https://doi.org/10.1038/nn.3533
  44. Lobo, M.K., Covington, H.E. 3rd., Chaudhury, D, Friedman, A.K., Sun, H., Damez-Werno, D., Dietz, D.M., Zaman, S., Koo, J.W., Kennedy P.J., et al. (2010). Cell type-specific loss of BDNF signaling mimics optogenetic control of cocaine reward. Science 330, 385-390. https://doi.org/10.1126/science.1188472
  45. Luscher, C., Pascoli, V., and Creed, M. (2015). Optogenetic dissection of neural circuitry: From synaptic causalities to blue prints for novel treatments of behavioral diseases. Curr. Opin. Neurobiol. 35, 95-100. https://doi.org/10.1016/j.conb.2015.07.005
  46. Ma, Y.Y., Lee, B.R., Wang, X., Guo, C., Liu, L., Cui, R., Lan, Y., Balcita-Pedicino, J.J., Wolf, M.E., Sesack, S.R., et al. (2014). Bidirectional modulation of incubation of cocaine craving by silent synapse-based remodeling of prefrontal cortex to accumbens projections. Neuron 83, 1453-1467. https://doi.org/10.1016/j.neuron.2014.08.023
  47. MacAskill, A.F., Cassel, J.M., and Carter, A.G. (2014). Cocaine exposure reorganizes cell type- and input-specific connectivity in the nucleus accumbens. Nat. Neurosci. 17, 1198-1207. https://doi.org/10.1038/nn.3783
  48. Neve, K.A., Seamans, J.K., and Trantham-Davidson, H. (2004). Dopamine Receptor Signaling. J. Recept. Signal Transduct. 24, 165-205. https://doi.org/10.1081/RRS-200029981
  49. Ostlund, S.B., and Balleine, B.W. (2005). Lesions of Medial Prefrontal Cortex disrupt the acquisition but not the expression of goal-directed learning. J. Neurosci. 25, 7763-7770. https://doi.org/10.1523/JNEUROSCI.1921-05.2005
  50. Pascoli, V., Terrier, J., Espallergues, J., Valjent, E., O'Connor, E.C., and Luscher, C. (2014). Contrasting forms of cocaine-evoked plasticity control components of relapse. Nature 509, 459-464. https://doi.org/10.1038/nature13257
  51. Pascoli, V., Terrier, J., Hiver, A., and Lu, C. (2015). Sufficiency of mesolimbic dopamine neuron stimulation for the progression to addiction. Neuron 88, 1054-1066. https://doi.org/10.1016/j.neuron.2015.10.017
  52. Paton, J.J., Belova, M.A., Morrison, S.E., and Salzman, C.D. (2006). The primate amygdala represents the positive and negative value of visual stimuli during learning. Nature 439, 865-870. https://doi.org/10.1038/nature04490
  53. Peters, J., Vallone, J., Laurendi, K., and Kalivas, P.W. (2008). Opposing roles for the ventral prefrontal cortex and the basolateral amygdala on the spontaneous recovery of cocaine-seeking in rats. Psychopharmacology (Berl) 197, 319-326. https://doi.org/10.1007/s00213-007-1034-2
  54. Rogers, J.L., and See, R.E. (2007). Selective inactivation of the ventral hippocampus attenuates cue-induced and cocaine-primed reinstatement of drug-seeking in rats. Neurobiol. Learn. Mem. 87, 688-692. https://doi.org/10.1016/j.nlm.2007.01.003
  55. Saal, D., Dong, Y., Bonci, A., and Malenka, R.C. (2003). Drugs of abuse and stress trigger a common synaptic adaptation in dopamine neurons. Neuron 37, 577-582. https://doi.org/10.1016/S0896-6273(03)00021-7
  56. Shaham, Y., Erb, S., and Stewart, J. (2000). Stress-induced relapse to heroin and cocaine seeking in rats: a review. Brain Res. Rev. 33, 13-33. https://doi.org/10.1016/S0165-0173(00)00024-2
  57. Shukla, A., Beroun, A., Panopoulou, M., Neumann, P.A., Grant, S.G., Olive, M.F., Dong, Y., and Schluter, O.M. (2017). Calcium-permeable AMPA receptors and silent synapses in cocaine-conditioned place preference. EMBO J. 36, 458-474. https://doi.org/10.15252/embj.201695465
  58. Smith, Y., Bennett, B.D., Bolam, J.P., Parent, A., and Sadikot, A.F. (1994). Synaptic relationships between dopaminergic afferents and cortical or thalamic input in the sensorimotor territory of the striatum in monkey. J. Comp. Neurol. 344, 1-19. https://doi.org/10.1002/cne.903440102
  59. Stefanik, M.T., Moussawi, K., Kupchik, Y.M., Smith, K.C., Miller, R.L., Huff, M.L., Deisseroth, K., Kalivas, P.W., and Lalumiere, R.T. (2013). Optogenetic inhibition of cocaine seeking in rats. Addict. Biol. 18, 50-53. https://doi.org/10.1111/j.1369-1600.2012.00479.x
  60. Steinberg, E.E., Boivin, J.R., Saunders, B.T., Witten, I.B., Deisseroth, K., and Janak, P.H. (2014). Positive reinforcement mediated by midbrain dopamine neurons requires D1 and D2 receptor activation in the nucleus accumbens. PLoS One 9, e94771. https://doi.org/10.1371/journal.pone.0094771
  61. Stuber, G.D., Sparta, D.R., Stamatakis, A.M., van Leeuwen, W.A., Hardjoprajitno, J.E., Cho, S., Tye, K.M., Kempadoo, K.A., Zhang, F., Deisseroth, K., et al. (2011). Excitatory transmission from the amygdala to nucleus accumbens facilitates reward seeking. Nature 475, 377-380. https://doi.org/10.1038/nature10194
  62. Tsai, H.C., Zhang, F., Adamantidis, A., Stuber, G.D., Bonci, A., de Lecea L., Deisseroth, K. (2009). Phasic Firing in dopaminergic neurons is sufficient for behavioral conditioning. Science 324, 1080-1084. https://doi.org/10.1126/science.1168878
  63. Tye, K.M., and Deisseroth, K. (2012). Optogenetic investigation of neural circuits underlying brain disease in animal models. Nat. Rev. Neurosci. 13, 251-266. https://doi.org/10.1038/nrn3171
  64. Tzschentke, T.M. (1998). Measuring reward with the conditioned place preference paradigm: a comprehensive review of drug effects, recent progress and new issues. Prog. Neurobiol. 56, 613-672. https://doi.org/10.1016/S0301-0082(98)00060-4
  65. Ungless, M.A., Whistler, J.L., Malenka, R.C., and Bonci, A. (2001). Single cocaine exposure in vivo induces long-term potentiation in dopamine neurons. Nature 411, 583-587. https://doi.org/10.1038/35079077
  66. Walsh, J.J., Friedman, A.K., Sun, H., Heller, E.A., Ku, S.M., Juarez, B., Burnham, V.L., Mazei-Robison, M.S., Ferguson, D., Golden, S.A., et al. (2014). Stress and CRF gate neural activation of BDNF in the mesolimbic reward pathway. Nat. Neurosci. 17, 27-29. https://doi.org/10.1038/nn.3591
  67. Warner-Schmidt, J.L., Schmidt, E.F., Marshall, J.J., Rubin, A.J., Arango-Lievano, M., Kaplitt, M.G., Ibanez-Tallon, I., Heintz, N., Greengard, P. (2012). Cholinergic interneurons in the nucleus accumbens regulate depression-like behavior. Proc. Natl. Acad. Sci. USA 109, 11360-11365. https://doi.org/10.1073/pnas.1209293109
  68. Whitelaw, R.B., Markou, A., Robbins, T.W., Everitt, B.J. (1996). Excitotoxic lesions of the basolateral amygdala impair the acquisition of cocaine-seeking behaviour under a second-order schedule of reinforcememt. Psychopharmacology 127, 213-224. https://doi.org/10.1007/BF02805996
  69. Wise, R.A. (1998). Drug-activation of brain reward pathways. Drug Alcohol Depend. 51, 13-22. https://doi.org/10.1016/S0376-8716(98)00063-5
  70. Wise, R.A., and Koob, G.F. (2014). The development and maintenance of drug addiction. Neuropsychopharmacology 39, 254-262. https://doi.org/10.1038/npp.2013.261
  71. Witten, I.B., Steinberg, E.E., Lee, S.Y., Davidson, T.J., Zalocusky, K.A., Brodsky, M., Yizhar, O., Cho, S.L., Gong, S., Ramakrishnan, C., et al. (2011). Recombinase-driver rat lines: tools, techniques, and optogenetic application to dopamine-mediated reinforcement. Neuron 72, 721-733. https://doi.org/10.1016/j.neuron.2011.10.028
  72. Yin, H.H., and Knowlton, B.J. (2006). The role of the basal ganglia in habit formation. Nat. Rev. Neurosci. 7, 464-476. https://doi.org/10.1038/nrn1919
  73. Yorgason, J.T., Zeppenfeld, D.M., and Williams, J.T. (2017). Cholinergic interneurons underlie spontaneous dopamine release in nucleus accumbens. J. Neurosci. 37, 2086-2096. https://doi.org/10.1523/JNEUROSCI.3064-16.2017
  74. Zhu, Y., Wienecke, C.F., Nachtrab, G., and Chen, X. (2016). A thalamic input to the nucleus accumbens mediates opiate dependence. Nature 530, 219-222. https://doi.org/10.1038/nature16954

Cited by

  1. Defining the Construct of Synthetic Androgen Intoxication: An Application of General Brain Arousal vol.9, pp.1664-1078, 2018, https://doi.org/10.3389/fpsyg.2018.00390
  2. Role of NMDA and AMPA glutamatergic receptors in the effects of social defeat on the rewarding properties of MDMA in mice pp.0953816X, 2018, https://doi.org/10.1111/ejn.14190
  3. Increased Absolute Glutamate Concentrations and Glutamate-to-Creatine Ratios in Patients With Methamphetamine Use Disorders vol.9, pp.1664-0640, 2018, https://doi.org/10.3389/fpsyt.2018.00368
  4. The Role of Adenosine Receptors in Psychostimulant Addiction vol.8, pp.1663-9812, 2017, https://doi.org/10.3389/fphar.2017.00985
  5. Shared Behavioral and Neurocircuitry Disruptions in Drug Addiction, Obesity, and Binge Eating Disorder: Focus on Group I mGluRs in the Mesolimbic Dopamine Pathway vol.10, pp.5, 2019, https://doi.org/10.1021/acschemneuro.8b00601
  6. Interactions of Glutamatergic Neurotransmission and Brain-Derived Neurotrophic Factor in the Regulation of Behaviors after Nicotine Administration vol.20, pp.12, 2017, https://doi.org/10.3390/ijms20122943
  7. Analysis of RNA in the estimation of post-mortem interval: a review of current evidence vol.133, pp.6, 2017, https://doi.org/10.1007/s00414-019-02125-x
  8. Regional changes in ∆FosB expression in rat brain following MDMA self‐administration predict increased sensitivity to effects of locally infused MDMA vol.25, pp.5, 2017, https://doi.org/10.1111/adb.12814
  9. Epistatic evidence for gender-dependant slow neurotransmission signalling in substance use disorders: PPP1R12B versus PPP1R1B vol.61, pp.None, 2017, https://doi.org/10.1016/j.ebiom.2020.103066
  10. Effects of transcranial direct current stimulation on addictive behavior and brain glucose metabolism in problematic online gamers vol.9, pp.4, 2021, https://doi.org/10.1556/2006.2020.00092
  11. Effects of transcranial direct current stimulation on addictive behavior and brain glucose metabolism in problematic online gamers vol.9, pp.4, 2021, https://doi.org/10.1556/2006.2020.00092
  12. Astrocytic mitochondria in adult mouse brain slices show spontaneous calcium influx events with unique properties vol.96, pp.None, 2017, https://doi.org/10.1016/j.ceca.2021.102383
  13. Dysfunctional Brain Reward System in Child Obesity vol.31, pp.9, 2017, https://doi.org/10.1093/cercor/bhab092