참고문헌
- Aden, A., & Foust, T. (2009). Technoeconomic analysis of the dilute sulfuric acid and enzymatic hydrolysis process for the conversion of corn stover to ethanol. Cellulose, 16, 535-545. https://doi.org/10.1007/s10570-009-9327-8
- Adney, William S, E Michael E Himmel, David K Johnson, and E Mark F Davis. 2009. "Can Delignification Decrease Cellulose Digestibility in Acid Pretreated Corn Stover ?": Cellulose, 16(4), 677-86. https://doi.org/10.1007/s10570-009-9313-1
- Amenaghawon, A. N., et al. (2013). Statistical optimisation of dilute acid pre-treatment of corn stover using response surface methodology. Journal of Environment, 2(2), 34-40.
- Anne, K. (2014). Development of pretreatment technology and enzymatic hydrolysis for biorefineries. Finland: Aalto University School of Chemical Technology.
- Arana-cuenca, A., Sergio, A., Medina, M., & Octavio, L.-c. (2014). Effect of biological and chemical pre-treatment on the hydrolysis of corn leaf. bioresources.com, 9(2008), 6861-6875.
- Axelsson, X. (2011). Separate hydrolysis and fermentation of pretreated spruce (pp. 1-48). Linkoping: Master Thesis Linkoping University. https://www.divaportal.org/smash/get/diva2:427842/FULLTEXT01.pdf.
- Bandikari, R., Poondla, V., & Obulam, V. S. R. (2014). Enhanced production of xylanase by solid state fermentation using Trichoderma koeningi isolate: effect of pretreated agro-residues. 3 Biotech, 4(6), 655-664. http://link.springer.com/10.1007/s13205-014-0239-4.
- Barten Ty, J., & Ty Jason, B. (2013). Evaluation and prediction of corn stover biomass and composition from commercially available corn hybrids by.
- Behera, S., Richa, A., Nandhagopal, N., & Kumar, S. (2014). Importance of chemical pretreatment for bioconversion of. Renewable and Sustainable Energy Reviews journal, 36, 91-106. https://doi.org/10.1016/j.rser.2014.04.047
- Bengtsson, O., Gorwa-grauslund, M. F., & Karin, O. (2006). Simultaneous saccharification and co-fermentation of glucose and xylose in steampretreated corn stover at high fiber content with Saccharomyces cerevisiae TMB3400. Journal of Biotechnology, 126, 488-498. https://doi.org/10.1016/j.jbiotec.2006.05.001
- Bon Elba, P. S., & Maria Antonieta, F. (2013). Bioethanol production via enzymatic hydrolysis of cellulosic biomass (pp. 1-11).
- Cai, D., et al. (2016). Effect of dilute alkaline pretreatment on the conversion of different parts of corn stalk to fermentable sugars and its application in acetone-butanol-ethanol fermentation. Bioresource Technology, 211, 117-124. http://linkinghub.elsevier.com/retrieve/pii/S0960852416303704. https://doi.org/10.1016/j.biortech.2016.03.076
- Chen, J. Z., & Xia, L. (2009). Comparison of four different chemical pretreatments of corn stover for enhancing enzymatic digestibility. Biomass and Bioenergy, 33(10), 1381-1385. doi:10.1016/j.biombioe.2009.05.025.
- Chen, Y., et al. (2013). Understanding of alkaline pretreatment parameters for corn stover enzymatic saccharification. Biotechnology for Biofuels, 6(1), 8. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3575303&tool=pmcentrez&rendertype=abstract. https://doi.org/10.1186/1754-6834-6-8
- Cui, Z., et al. (2012). Enzymatic digestibility of corn stover fractions in response to fungal pretreatment. Industrial & Engineering Chemistry Research, 51(21), 7153-7159. https://doi.org/10.1021/ie300487z
- Dominguez, J. M., Ningjun, C., Gongh, C. S., & Tsaoh, G. T. (1997). Dilute acid hemicellulose hydrolysates from corn cobs for xylitol production by yeast. Bioresource Technology, 61(1), 85-90. https://doi.org/10.1016/S0960-8524(97)84703-7
- Gao, X., & Lars, R. (2014). ABE fermentation from enzymatic hydrolysate of NaOHpretreated corncobs. Biomass and Bioenergy, 66, 2-7. doi:10.1016/j.biombioe. 2014.03.002.
- Gao, et al. (2014). Research on hydrolysis and saccharification of corn stover. China Petroleum Processing and Petrochemical Technology, 16(2), 40-45.
- Garlock, R. J., Chundawat, S. P., Balan, V., & Dale, B. E. (2009). Optimizing harvest of corn stover fractions based on overall sugar yields following ammonia fiber expansion pretreatment and enzymatic hydrolysis. Biotechnology for Biofuels, 2(1), 29. http://www.ncbi.nlm.nih.gov/pubmed/19930679. https://doi.org/10.1186/1754-6834-2-29
- Ghose, T. K. (1987). International union of pure commission on biotechnology-- measurement of cellulase activities. Pure and Applied Chemistry, 59(2), 257-268. http://www.iupac.org/publications/pac/1987/pdf/5902x0257.pdf. https://doi.org/10.1351/pac198759020257
- Girisuta, et al. (2008). Experimental and kinetic modelling studies on the acidcatalysed hydrolysis of the water hyacinth plant to levulinic acid. Biores Tech, 99(17), 8367-8375. https://doi.org/10.1016/j.biortech.2008.02.045
- Hames, B., et al. (2008). Preparation of samples for compositional analysis laboratory analytical procedure (LAP) issue date : 8/06/2008 preparation of samples for compositional analysis laboratory analytical procedure (LAP). http://www.nrel.gov/biomass/analytical_procedures.html (July 29, 2015).
- Hanway, J. J. (1963). Growth stages of corn (Zea Mays, L.). Agronomy Journal, 55(5), 487-492. http://www.ipm.iastate.edu/ipm/icm/2007/8-6/nutrients.html (January 10, 2016). https://doi.org/10.2134/agronj1963.00021962005500050024x
- Hart, Peter, W., & Rudie, A. W. (2012). The bleaching of pulp (5 Thth ed.).
- Hendriks, A. (2008). Pretreatments to enhance the digestibility of lignocellulosic biomass. Bioresource Technology, 100(1), 10-18. https://doi.org/10.1016/j.biortech.2008.05.027
- Heyne, S., & Harvey, S. (2013). Assessment of the energy and economic performance of second generation biofuel production processes using energy market scenarios. Applied Energy, 101, 203-212. doi:10.1016/j.apenergy.2012.03.034.
- Idrees, M., et al. (2013). Experimental runs optimization of dilute acid pretreatment of water hyacinth biomass for enzymatic hydrolysis and ethanol production. EXCLI Journal, 2013, 30-40.
- Idrees, M., Adnan, A., & Qureshi, F. A. (2014). Comparison of acid and alkali catalytic efficiency during enzymatic saccharification of corncob and lactic acid production. Pakistan Journal of Agricultural Sciences, 51(4), 1049-1058. http://pakjas.com.pk/papers/2376.pdf.
- Jeevan, P., Nelson, R., & Edith Rena, A. (2011). Optimization studies on acid hydrolysis of corn cob hemicellulosic hydrolysate for microbial production of xylitol. Journal of Microbiology and Biotechnology Research, 1(4), 114-123.
- Jin, Y., Huang, T., Geng, W., & Yang, L. (2013). Comparison of sodium carbonate pretreatment for enzymatic hydrolysis of wheat straw stem and leaf to produce fermentable sugars. Bioresource Technology, 137, 294-301. doi:10.1016/j.biortech.2013.03.140.
- Kaar, W. E., & Holtzapple, M. T. (2000). Using lime pretreatment to facilitate the enzymic hydrolysis of corn stover. Biomass and Bioenergy, 18(3), 189-199. https://doi.org/10.1016/S0961-9534(99)00091-4
- Kang, Qian, Lise Appels, Tianwei Tan, and Raf Dewil. (2014). "Bioethanol from Lignocellulosic Biomass : Current Findings Determine Research Priorities." Scientific World Journal, 2014, 1-13.
- Karimi, K., Kheradmandinia, S., & Taherzadeh, M. J. (2006). Conversion of rice straw to sugars by dilute-acid hydrolysis. Biomass and Bioenergy, 30(3), 247-253. http://www.sciencedirect.com/science/article/pii/S0961953405001996. https://doi.org/10.1016/j.biombioe.2005.11.015
- Karp et al. 2014. Alkaline pretreatment of corn stover: bench-scale fractionation and stream characterization. Sustainable chemistry and Engineering.
- Klass, D. L. (1985). Energy and biomass and wastes: a review and 1983 update. Resources and Conservation, 11, 157-239. https://doi.org/10.1016/0166-3097(85)90001-X
- Lee, J. W., et al. (2007). Biological pretreatment of softwood Pinus densiflora by three white Rot fungi.pdf. Journal of Microbilogy, 45(6), 485-491.
- Li, Q., et al. (2012). Comparison of different alkali-based pretreatments of corn stover for improving enzymatic saccharification. Bioresource Technology, 125, 193-199. doi:10.1016/j.biortech.2012.08.095.
- Li, P., et al. (2016). Effect of acid pretreatment on different parts of corn stalk for second generation ethanol production. Bioresource Technology, 206, 86-92. doi:10.1016/j.biortech.2016.01.077.
- Lloyd, Todd A, and Charles E Wyman. (2005). "Combined Sugar Yields for Dilute Sulfuric Acid Pretreatment of Corn Stover Followed by Enzymatic Hydrolysis of the Remaining Solids." 96: 1967-77. https://doi.org/10.1016/j.biortech.2005.01.011
- Manzoor, A., et al. (2012). Dilute sulfuric acid : a cheap acid for optimization. Sci Int, 24(1), 41-45.
- Maurice, Michelle L. 2011. Factors effecting ethanol fermentation via simultaneous saccharification and fermentation. Worcester Polytechnic Institute.
- Mcaloon, A., et al. (2000). Determining the cost of producing ethanol from corn starch and lignocellulosic feedstocks determining the cost of producing ethanol from corn starch and lignocellulosic (National Renewable Energy Laboratory, NREL/TP-580-28893).
- Miller, G. L. (1958). Use of dinitrosalicylic acid reagent for determination of reducing sugar. Analytical Chemistry, 31(3), 426-428. https://doi.org/10.1021/ac60147a030
- Modenbach, A. (2013). Sodium hydroxide pretreatment of corn stover and subsequent enzymatic hydrolysis: an investigation of yields, kinetic modeling and glucose recovery. Lexington: University of Kentucky.
- Montross, & Crofcheck, C. L. (2004). Effect of stover fraction and storage method on glucose production during enzymatic hydrolysis. Bioresource Technology, 92(3), 269-274. https://doi.org/10.1016/j.biortech.2003.09.007
- Obama, P., Ricochon, G., Muniglia, L., & Brosse, N. (2012). Bioresource technology combination of enzymatic hydrolysis and ethanol organosolv pretreatments: effect on lignin structures, delignification yields and cellulose-to-glucose conversion. Bioresource Technology, 112, 156-163. doi:10.1016/j.biortech.2012.02.080.
- Oliva, J. M., & Ballesteros, M. (2008). Realistic approach for full-scale bioethanol production from lignocellulose : a review (Vol. 67, pp. 874-884).
- Payne, C. E., & Wolfrum, E. J. (2015). Rapid analysis of composition and reactivity in cellulosic biomass feedstocks with near-infrared spectroscopy. Biotechnology for Biofuels, 8(1), 1-14. http://www.biotechnologyforbiofuels.com/content/8/1/43. https://doi.org/10.1186/s13068-014-0179-6
- Pointner, et al. (2014). Composition of corncobs as a substrate for fermentation of biofuels. Agronomy Research, 12(2), 391-396.
- Puri, M., Abraham, R. E., & Barrow, C. J. (2012). Biofuel production: prospects, challenges and feedstock in Australia. Renewable and Sustainable Energy Reviews, 16(8), 6022-6031. doi:10.1016/j.rser.2012.06.025.
- Qureshi, A. S., Zhang, J., & Bao, J. (2015). Bioresource technology high ethanol fermentation performance of the dry dilute acid pretreated corn stover by an evolutionarily adapted saccharomyces cerevisiae strain. Bioresource Technology, 189, 399-404. doi:10.1016/j.biortech.2015.04.025.
- Roslan, A. M., Yee, P. L., Shah, U. K. M., Aziz, S. A., & Hassan, M. A. (2011). Production of bioethanol from rice straw using cellulase by local Aspergillus sp. International Journal of Agricultural Research, 6(2), 188-193. https://doi.org/10.3923/ijar.2011.188.193
- Saha, B. C., Iten, L. B., Cotta, M. A., & Victor Wu, Y. (2005). Dilute acid pretreatment, enzymatic saccharification and fermentation of wheat straw to ethanol. Process Biochemistry, 40(12), 3693-3700. https://doi.org/10.1016/j.procbio.2005.04.006
- Sahare Rajkumar, S., Seeta Laxman, R., & Mala, R. (2012). Effect of alkali pretreatment on the structural properties and enzymatic hydrolysis of corn cob (pp. 1806-1819).
- Satimanont, Sirikarn, Apanee Luengnaruemitchai, and Sujitra Wongkasemjit. 2012. "Effect of Temperature and Time on Dilute Acid Pretreatment of Corn Cobs." 66(4): 316-20.
- Scarlat, N., Dallemand, J.-f., Monforti-ferrario, F., & Nita, V. (2015). The role of biomass and bioenergy in a future bioeconomy: policies and facts. Environmental Development, 15, 3-34. doi:10.1016/j.envdev.2015.03.006.
- Schmidt Anette, S., & Anne Belinda, T. (1998). Optimization of wet oxidation pretreatment of wheat straw (Vol. 64, pp. 139-151). https://doi.org/10.1016/S0960-8524(97)00164-8
- Shuang-Qi, T., & Chen, Z.-C. (2016). Com dynamic analysis of bioethanol production from corn stover and immobilized yeast. Bioresources, 11(3), 6040-6049.
- Singh, & Rakesh Kumar, T. (2013). Acid and alkaline pretreatment of lignocellulosic biomass to produce ethanol as biofuel. International Journal of ChemTech Research, 5(2), 727-734.
- Singh, et al. (2015). Comparison of different biomass pretreatment techniques and their impact on chemistry and structure. Frontiers in Energy Research, 2(February), 1-12. http://www.frontiersin.org/Bioenergy_and_Biofuels/10.3389/fenrg.2014.00062/abstract.
-
Uppugundla, N., et al. (2014). A comparative study of ethanol production using dilute acid, ionic liquid and
$AFEX^{TM}$ pretreated corn stover. Biotechnology for Biofuels, 7(1), 72. http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=4050221&tool=pmcentrez&rendertype=abstract. https://doi.org/10.1186/1754-6834-7-72 - Van Soest, P. J. (1963). Use of detergents in the analysis of fibrous feeds. II. A rapid method for the determination of fiber and lignin. Journal of the Association of Official Analytical Chemists, 46, 829-835.
- Vani, S., Sukumaran, R. K., & Savithri, S. (2015). Prediction of sugar yields during hydrolysis of lignocellulosic biomass using artificial neural network modeling. Bioresource Technology, 188, 128-135. http://linkinghub.elsevier.com/retrieve/pii/S0960852415001030. https://doi.org/10.1016/j.biortech.2015.01.083
- Vincent, M. A. (2010). Sequential saccharification and fermentation of corn stover for the production of fuel ethanol using wood-rot fungi, Saccharomyces cerevisiae and Escherichia coli K011. Civil and Environmental Engineering, 11403, 234.
- Xu, J., Wang, Z., Sharma-Shivappa, R. R., & Cheng, J. J. (2011). Enzymatic hydrolysis of switchgrass and coastal Bermuda grass pretreated using different chemical methods. BioResources, 6(3), 2990-3003.
- Xuejun, et al. (2004). Enhanced enzymatic hydrolysis of steam-exploded Douglas fir wood by alkali-oxygen post-treatment. Applied Biochemistry and Biotechnology, 113, 1103-1114.
- Yu, H., et al. (2009). The effect of biological pretreatment with the selective white-rot fungus Echinodontium taxodii on enzymatic hydrolysis of softwoods and hardwoods. Bioresource Technology, 100(21), 5170-5175. doi:10.1016/j.biortech.2009.05.049.
- Zhang, X. (2012). Pretreatment of corn stover of sugar production by using the combination of alkaline reagents and switchgrass-derived black liqour.
- Zhao, J., & Xia, L. (2009). Simultaneous saccharification and fermentation of alkaline-pretreated corn stover to ethanol using a recombinant yeast strain. Fuel Processing Technology, 90(10), 1193-1197. doi:10.1016/j.fuproc. 2009.05.018.
- Zhu, J. Y., & Zhuang, X. S. (2012). Conceptual net energy output for biofuel production from lignocellulosic biomass through biorefining. Progress in Energy and Combustion Science, 38(4), 583-598. doi:10.1016/j.pecs.2012.03.007.
피인용 문헌
- A comparative evaluation of fermentable sugars production from oxidative, alkaline, alkaline peroxide oxidation, dilute acid, and molten hydrate salt pretreatments of corn cob biomass vol.9, pp.1, 2017, https://doi.org/10.3934/energy.2021002
- The “Zero Miles Product” Concept Applied to Biofuel Production: A Case Study vol.14, pp.3, 2017, https://doi.org/10.3390/en14030565