DOI QR코드

DOI QR Code

Design and performance evaluation of a storage cloud service model over KREONET

KREONET 기반의 스토리지 클라우드 서비스 모델 설계 및 성능평가

  • 홍원택 (한국과학기술정보연구원 슈퍼컴퓨팅본부) ;
  • 정진욱 (성균관대학교 정보통신공학부)
  • Received : 2017.05.02
  • Accepted : 2017.07.20
  • Published : 2017.07.28

Abstract

Compared to the commercial networks, R&E networks have the strength such as flexible network engineering and design. Based on those features of R&E networks, we propose our storage cloud service model which supports general-purpose network users in a central region and experimental network users in distributed regions simultaneously. We prototype our service model utilizing multiple proxy controllers of OpenStack Swift service in order to deploy several regions via experimental backbone networks. Our experiments on the influence of the network latency and the size of data to be transmitted show that the bigger size of data is preferable to the smaller size of data in an experimental backbone network where the network latency increases within 10ms because the rate of throughput decline in the bigger object is comparatively small. It means that our service model is appropriate for experimental network users who directly access the service in order to move intermittently high volume of data as well as normal users in the central region who access the service frequently.

연구망은 상용망과 비교하여 유연한 네트워크 엔지니어링 및 설계 등의 강점을 갖는다. 본 논문은 이러한 연구망의 특성에 기반하여 일반 망 사용자들과 분산된 지역의 첨단 망 사용자들을 동시에 지원하는 스토리지 클라우드 서비스 모델을 제안한다. 첨단 백본 망에 연결된 다수 지역을 적용하기 위해 오픈스택 Swift 서비스의 복수 프락시 컨트롤러를 활용하여 제안 서비스 모델을 프로토타이핑 한다. 망 지연 및 전송 데이터 크기의 영향과 관련한 실험에서 10ms 범위 내의 망 지연이 발생하는 첨단 백본 망에서는 데이터 크기가 상대적으로 큰 데이터가 작은 데이터보다 선호되는 것을 볼 수 있었고, 이것은 큰 데이터에서의 처리 감소율이 작은 데이터에 비해 상대적으로 작은 것에 기인한다. 이러한 실험 결과는 제안 모델이 중앙 지역에서 서비스의 접근 빈도가 잦은 일반 사용자들뿐만 아니라 간헐적으로 대용량 데이터를 전송하기 위해 서비스에 접근하는 첨단 망 사용자들에게도 적합하다는 것을 보여준다.

Keywords

References

  1. J. Balewski et al., Offloading Peak Processing to Virtual Farm by STAR Experiment at RHIC. Journal of Physics: Conference Series, 368(2012):012011, 2012.
  2. R. P Taylor et al., The Evolution of Cloud Computing in ATLAS.Journal of Physics: Conference Series, 664(2015):022038, 2015.
  3. M. Parashar, M. Abdelbaky, I. Rodero and A. Devarakonda, Cloud Paradigms and Practices for Computational and Data-Enabled Science and Engineering. Computing in Science & Eng., vol. 15(4), 2013, pp. 10-18. https://doi.org/10.1109/MCSE.2013.49
  4. K. Keahey and M. Parashar, Enabling On-Demand Science via Cloud Computing. IEEE Cloud Computing, May 2014, pp.21-27.
  5. D. Yuan, L. Cui and X. Liu, Cloud Data Management for Scientific Workflows: Research Issues, Methodologies, and State-of-the-Art. IEEE International Conference on Semantics, Knowledge and Grids, Aug. 2014.
  6. NIST Cloud Computing Program, http://www.nist.gov/itl/cloud/.date accessed:24/10/2016.
  7. Y. Liu, V. Vlassov and L. Navarro, Towards a Community Cloud Storage. IEEE International Conference on Advanced Information Networking and Applications, May, 2014, pp.837-844.
  8. Jung-Yul Choi, "A Study on Networking Technology for Cloud Data Centers", Journal of digital Convergence, Vol. 14, No. 2, pp. 235-243, 2016. https://doi.org/10.14400/JDC.2016.14.2.235
  9. OpenCloud, http://www.opencloud.us/. date accessed: 24/10/2016.
  10. GEANT project white paper, Milestone MS101 (MJ1.2.1): Network Architectures for Cloud Services. Mar. 2014.
  11. S. Yokoyama and N. Yoshioka, On-demand Cloud Architecture for Academic Community Cloud - Another Approach to Inter-cloud Collaboration. 4th International Conference on Cloud Computing and Services Science,2014, pp.661-670.
  12. L. Ramakrishnan et al., Magellan: experiences from a science cloud. Proceedings of the 2nd international workshop on scientific cloud computing, Jun. 2011, pp.49-58.
  13. R. Chard, K.Bubendorfer and B. Ng,Network Health and e-Science in Public Clouds. IEEE 10th International Conference on e-Science, Oct. 2014, pp.309-316.
  14. A. Melekhova and V. Vinnikov, Cloud and Grid Part I: Difference and Convergence. Indian Journal of Science and Technology, vol. 8(29), Nov. 2015.
  15. A. Melekhova and V. Vinnikov, Cloud and Grid Part II: Virtualized Resource Balancing. Indian Journal of Science and Technology, vol. 8(29), Nov. 2015.
  16. N. Nagar and U. Suman, Architectural Comparison and Implementation of Cloud Tools and Technologies. International Journal of Future Computer and Communication vol. 3(3), Jun. 2014, pp.153-160. https://doi.org/10.7763/IJFCC.2014.V3.287
  17. OpenStack, http://www.openstack.org/. date accessed: 24/10/2016.
  18. HAProxy, http://www.haproxy.org/. date accessed: 24/10/2016.
  19. M. Lanner and D. Bishop, Benchmarking. In: OpenStack Swift, O'Reilly, 2014, pp.273-298.
  20. TC tool, https://wiki.linuxfoundation.org/networking/netem. date accessed: 24/10/2016.