References
- T. Aliyev Azeroglu and B. N. Ornek, A refined Schwarz inequality on the boundary, Complex Var. Elliptic Equ. 58 (2013), no. 4, 571-577. https://doi.org/10.1080/17476933.2012.718338
- H. P. Boas, Julius and Julia: Mastering the Art of the Schwarz lemma, Amer. Math. Monthly 117 (2010), no. 9, 770-785. https://doi.org/10.4169/000298910x521643
- D. Chelst, A generalized Schwarz lemma at the boundary, Proc. Amer. Math. Soc. 129 (2001), no. 11, 3275-3278. https://doi.org/10.1090/S0002-9939-01-06144-5
- V. N. Dubinin, The Schwarz inequality on the boundary for functions regular in the disc, J. Math. Sci. 122 (2004), no. 6, 3623-3629. https://doi.org/10.1023/B:JOTH.0000035237.43977.39
- V. N. Dubinin, Bounded holomorphic functions covering no concentric circles, J. Math. Sci. 207 (2015), no. 6, 825-831. https://doi.org/10.1007/s10958-015-2406-5
- G. M. Golusin, Geometric Theory of Functions of Complex Variable, 2nd edn., Moscow, 1966.
- M. Jeong, The Schwarz lemma and boundary fixed points, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 18 (2011), no. 3, 219-227.
- M. Jeong, The Schwarz lemma and its applications at a boundary point, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 21 (2014), no. 3, 275-284.
- S. G. Krantz and D. M. Burns, Rigidity of holomorphic mappings and a new Schwarz Lemma at the boundary, J. Amer. Math. Soc. 7 (1994), no. 3, 661-676. https://doi.org/10.1090/S0894-0347-1994-1242454-2
-
T. Liu and X. Tang, The Schwarz lemma at the boundary of the Egg domain
$B_{p1,p2}\;in\;\mathbb{C}^n$ , Canad. Math. Bull. 58 (2015), no. 2, 381-392. https://doi.org/10.4153/CMB-2014-067-7 -
J. Lu, X. Tang, and T. Liu, Schwarz lemma at the boundary of the unit polydisk in
$\mathbb{C}^n$ , Sci. China Math. 58 (2015), no. 8, 1639-1652. https://doi.org/10.1007/s11425-015-4975-7 - M. Mateljevic, Ahlfors-Schwarz lemma and curvature, Kragujevac J. Math. 25 (2003), 155-164.
- M. Mateljevic, Distortion of harmonic functions and harmonic quasiconformal quasi-isometry, Rev. Roumaine Math. Pures Appl. 51 (2006), no. 5-6, 711-722.
- M. Mateljevic, The Lower Bound for the Modulus of the Derivatives and Jacobian of Harmonic Injective Mappings, Filomat 29 (2015), no. 2, 221-244. https://doi.org/10.2298/FIL1502221M
- M. Mateljevic, Note on Rigidity of Holomorphic Mappings & Schwarz and Jack Lemma (in preparation), ResearchGate.
- R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc. 128 (2000), no. 12, 3513-3517. https://doi.org/10.1090/S0002-9939-00-05463-0
- B. N. Ornek, Sharpened forms of the Schwarz lemma on the boundary, Bull. Korean Math. Soc. 50 (2013), no. 6, 2053-2059. https://doi.org/10.4134/BKMS.2013.50.6.2053
- B. N. Ornek, Inequalities for the non-tangential derivative at the boundary for holomorphic function, Commun. Korean Math. Soc. 29 (2014), no. 3, 439-449. https://doi.org/10.4134/CKMS.2014.29.3.439
- Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992.
- D. Shoikhet, M. Elin, F. Jacobzon, and M. Levenshtein, The Schwarz lemma: Rigidity and Dynamics, Harmonic and Complex Analysis and its Applications, 135-230, Springer International Publishing, 2014.