DOI QR코드

DOI QR Code

ESTIMATES FOR SECOND NON-TANGENTIAL DERIVATIVES AT THE BOUNDARY

  • Received : 2016.09.21
  • Accepted : 2017.02.02
  • Published : 2017.07.31

Abstract

In this paper, a boundary version of Schwarz lemma is investigated. We take into consideration a function f(z) holomorphic in the unit disc and f(0) = 0, f'(0) = 1 such that ${\Re}f^{\prime}(z)$ > ${\frac{1-{\alpha}}{2}}$, -1 < ${\alpha}$ < 1, we estimate a modulus of the second non-tangential derivative of f(z) function at the boundary point $z_0$ with ${\Re}f^{\prime}(z_0)={\frac{1-{\alpha}}{2}}$, by taking into account their first nonzero two Maclaurin coefficients. Also, we shall give an estimate below ${\mid}f^{{\prime}{\prime}}(z_0){\mid}$ according to the first nonzero Taylor coefficient of about two zeros, namely z = 0 and $z_1{\neq}0$. The sharpness of these inequalities is also proved.

Keywords

References

  1. T. Aliyev Azeroglu and B. N. Ornek, A refined Schwarz inequality on the boundary, Complex Var. Elliptic Equ. 58 (2013), no. 4, 571-577. https://doi.org/10.1080/17476933.2012.718338
  2. H. P. Boas, Julius and Julia: Mastering the Art of the Schwarz lemma, Amer. Math. Monthly 117 (2010), no. 9, 770-785. https://doi.org/10.4169/000298910x521643
  3. D. Chelst, A generalized Schwarz lemma at the boundary, Proc. Amer. Math. Soc. 129 (2001), no. 11, 3275-3278. https://doi.org/10.1090/S0002-9939-01-06144-5
  4. V. N. Dubinin, The Schwarz inequality on the boundary for functions regular in the disc, J. Math. Sci. 122 (2004), no. 6, 3623-3629. https://doi.org/10.1023/B:JOTH.0000035237.43977.39
  5. V. N. Dubinin, Bounded holomorphic functions covering no concentric circles, J. Math. Sci. 207 (2015), no. 6, 825-831. https://doi.org/10.1007/s10958-015-2406-5
  6. G. M. Golusin, Geometric Theory of Functions of Complex Variable, 2nd edn., Moscow, 1966.
  7. M. Jeong, The Schwarz lemma and boundary fixed points, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 18 (2011), no. 3, 219-227.
  8. M. Jeong, The Schwarz lemma and its applications at a boundary point, J. Korean Soc. Math. Educ. Ser. B: Pure Appl. Math. 21 (2014), no. 3, 275-284.
  9. S. G. Krantz and D. M. Burns, Rigidity of holomorphic mappings and a new Schwarz Lemma at the boundary, J. Amer. Math. Soc. 7 (1994), no. 3, 661-676. https://doi.org/10.1090/S0894-0347-1994-1242454-2
  10. T. Liu and X. Tang, The Schwarz lemma at the boundary of the Egg domain $B_{p1,p2}\;in\;\mathbb{C}^n$, Canad. Math. Bull. 58 (2015), no. 2, 381-392. https://doi.org/10.4153/CMB-2014-067-7
  11. J. Lu, X. Tang, and T. Liu, Schwarz lemma at the boundary of the unit polydisk in $\mathbb{C}^n$, Sci. China Math. 58 (2015), no. 8, 1639-1652. https://doi.org/10.1007/s11425-015-4975-7
  12. M. Mateljevic, Ahlfors-Schwarz lemma and curvature, Kragujevac J. Math. 25 (2003), 155-164.
  13. M. Mateljevic, Distortion of harmonic functions and harmonic quasiconformal quasi-isometry, Rev. Roumaine Math. Pures Appl. 51 (2006), no. 5-6, 711-722.
  14. M. Mateljevic, The Lower Bound for the Modulus of the Derivatives and Jacobian of Harmonic Injective Mappings, Filomat 29 (2015), no. 2, 221-244. https://doi.org/10.2298/FIL1502221M
  15. M. Mateljevic, Note on Rigidity of Holomorphic Mappings & Schwarz and Jack Lemma (in preparation), ResearchGate.
  16. R. Osserman, A sharp Schwarz inequality on the boundary, Proc. Amer. Math. Soc. 128 (2000), no. 12, 3513-3517. https://doi.org/10.1090/S0002-9939-00-05463-0
  17. B. N. Ornek, Sharpened forms of the Schwarz lemma on the boundary, Bull. Korean Math. Soc. 50 (2013), no. 6, 2053-2059. https://doi.org/10.4134/BKMS.2013.50.6.2053
  18. B. N. Ornek, Inequalities for the non-tangential derivative at the boundary for holomorphic function, Commun. Korean Math. Soc. 29 (2014), no. 3, 439-449. https://doi.org/10.4134/CKMS.2014.29.3.439
  19. Ch. Pommerenke, Boundary Behaviour of Conformal Maps, Springer-Verlag, Berlin, 1992.
  20. D. Shoikhet, M. Elin, F. Jacobzon, and M. Levenshtein, The Schwarz lemma: Rigidity and Dynamics, Harmonic and Complex Analysis and its Applications, 135-230, Springer International Publishing, 2014.