DOI QR코드

DOI QR Code

Microstructure, Tensile Strength and Probabilistic Fatigue Life Evaluation of Gray Cast Iron

회주철의 미세구조와 인장거동 분석 및 확률론적 피로수명평가

  • 성용현 (한양대학교 대학원 기계설계공학과) ;
  • 한승욱 (한양대학교 기계공학과) ;
  • 최낙삼 (한양대학교 기계공학과)
  • Received : 2016.12.20
  • Accepted : 2017.04.10
  • Published : 2017.08.01

Abstract

High-grade gray cast iron (HCI350) was prepared by adding Cr, Mo and Cu to the gray cast iron (GC300). Their microstructure, mechanical properties and fatigue strength were studied. Cast iron was made from round bar and plate-type castings, and was cut and polished to measure the percentage of each microstructure. The size of flake graphite decreased due to additives, while the structure of high density pearlite increased in volume percentage improving the tensile strength and fatigue strength. Based on the fatigue life data obtained from the fatigue test results, the probability - stress - life (P-S-N) curve was calculated using the 2-parameter Weibull distribution to which the maximum likelihood method was applied. The P-S-N curve showed that the fatigue strength of HCI350 was significantly improved and the dispersion of life data was lower than that of GC300. However, the fatigue life according to fatigue stress alleviation increased further. Data for reliability life design was presented by quantitatively showing the allowable stress value for the required life cycle number using the calculated P-S-N curve.

보통회주철(GC300)에 Cr, Mo, Cu 첨가제를 넣어 고급 회주철(HCI350)을 제작하고, 미세 조직과 기계적 물성치, 피로강도의 변화를 연구하였다. 주철을 환봉형과 평판형 주물로 제작하였으며, 이들을 절단 및 연마하여 나이탈 수용액으로 에칭한 후 미세조직의 면적비율을 측정하였다. 첨가물에 의해 편상 흑연결정(flake graphite)의 크기가 감소하고 고밀 펄라이트 함량이 증가하여 인장강도, 피로강도의 향상이 확인되었다. 피로시험 결과 획득한 피로수명 데이터를 바탕으로 최우추정법이 적용된 2모수 와이블 분포를 이용하여 확률-응력-수명 곡선을 산출하였다. 확률-응력-수명곡선 산출 결과 HCI350은 GC300에 비해 피로강도는 크게 개선되었고 수명데이터의 분산성은 낮아졌으나, 피로응력완화에 따른 피로수명의 증가가 크게 나타났다. 산출된 확률-응력-수명 곡선을 이용하여 요구수명 사이클 수에 대한 허용응력 값을 정량적으로 제시함으로써 신뢰성 수명설계에 위한 기초자료를 제시하였다.

Keywords

References

  1. Saeger, C. M., Jr. and Ash, E. J., 1934, "Properties of Gray Cast Iron as Affected by Casting Conditions," Journal of Research of the National Bureau of Standards, Vol. 13, No. 4, pp. 573-577. https://doi.org/10.6028/jres.013.038
  2. Stefanescu, D. M., 2005, "Solidification and Modeling of Cast Iron-A Short History of the Defining Moments," Materials Science and Engineering A, Vol. 413-414, pp. 322-333. https://doi.org/10.1016/j.msea.2005.08.180
  3. Walton, C. F. and Opar, T. J., 1981, "Iron Castings Handbook: Covering Data on Gray, Malleable, Ductile, White, Alloy and Compacted Graphite Irons," Iron Castings Society, NewYork, pp. 57-58.
  4. Holmgren, D. and Svensson, I. L., 2013, "Thermal Conductivity-Structure Relationships in Grey Cast Iron," International Journal of Cast Metals Research, Vol. 18, No. 6, pp. 321-330. https://doi.org/10.1179/136404605225023162
  5. Bartocha, D., Janerka, K. and Suchon, J., 2005, "Charge Materials and Technology of Melt and Structure of Gray Cast Iron," Journal of Materials Processing Technology, Vol. 162-163, pp. 465-470. https://doi.org/10.1016/j.jmatprotec.2005.02.050
  6. Collini, L., Nicoletto, G. and Konecna, R., 2008, "Microstructure and Mechanical Properties of Pearlitic Gray Cast Iron," Materials Science and Engineering A, Vol. 488, No. 1-2, pp. 529-539. https://doi.org/10.1016/j.msea.2007.11.070
  7. Davis, J. R., 1996, Cast Irons, ASM International, USA
  8. Xue, W. and Li, Y., 2016, "Pretreatments of Gray Cast Iron with Different Inoculants," Journal of Alloys and Compounds, Vol. 689, pp. 408-415. https://doi.org/10.1016/j.jallcom.2016.07.052
  9. Liu, A. and Previtalim B., 2010, "Laser Surface Treatment of Grey Cast Iron by High Power Diode Laser," Physics Procedia, Vol. 689, pp. 408-415.
  10. Hsu, C. H., Shy, Y. H., Yu, Y. H. and Lee, S. C., 2000, "Effect of Austempering Heat Treatment on Fracture Toughness of Copper Alloyed Gray Iron," Materials Chemistry and Physics, Vol. 63, No. 1, pp. 75-81. https://doi.org/10.1016/S0254-0584(99)00213-8
  11. Fan, K. L., He, G. Q., She, M., Liu, X. S., Lu, Q., Yang, Y., Tian, D. D. and Shen, Y., 2014, "High- Temperature Low Cycle Fatigue Behavior of a Gray Cast Iron," Materials Characterization, Vol. 98, pp. 37-46. https://doi.org/10.1016/j.matchar.2014.10.005
  12. Pevec, M., Oder, G., Potrc, I. and Sraml, M., 2014, "Elevated Temperature Low Cycle Fatigue of Grey Cast Iron Used for Automotive Brake Discs," Engineering Failure Analysis, Vol. 42, pp. 221-230. https://doi.org/10.1016/j.engfailanal.2014.03.021
  13. Weinacht, D. J. and Socie, D. F., 1987, "Fatigue Damage Accumulation in Grey Cast Iron," International Journal of Fatigue, Vol. 9, No. 2, pp. 79-86. https://doi.org/10.1016/0142-1123(87)90048-X
  14. Kim, H. K., Park, J. H., Yang, K. T. and Choi, D. H., 2006, "Fatigue Crack Growth Behavior of Gray Cast Iron for Brake Disc of a Passenger Car," The Korean Society of Safety, Vol. 21, No. 4, pp. 19-24.
  15. Shi, K., Hu, S. and Zheng, H., 2011, "Microstructure and Fatigue Properties of Plasma Transferred Arc Alloying TiC-W-Cr on Gray Cast Iron," Surface and Coatings Technology, Vol. 206, No. 6, pp. 1211- 1217. https://doi.org/10.1016/j.surfcoat.2011.08.034
  16. Willidal, T., Bauer, W. and Schumacher, P., 2005, "Stress/Strain Behaviour and Fatigue Limit of Grey Cast Iron," Materials Science and Engineering A, Vol. 413-414, pp. 578-582. https://doi.org/10.1016/j.msea.2005.08.200
  17. Davis, J. R., 1996, Cast Irons, ASM International, USA, pp. 155-172.
  18. Hwang, W. B. and Han, K. S., 1988, "Analysis on Fatigue Life Distribution of Composite Materials," Journal of Mechanical Science and Technology, Vol. 24, No. 9, pp. 2353-2360.
  19. Jang, S. S. and Kim, S. T., 2000, "A Statistical Analysis on Fatigue Life Distribution in Spheroidal Graphite Cast Iron," Journal of Mechanical Science and Technology, Vol. 46, No. 14, pp. 1755-1764.
  20. Basuqin, O. H., 1910, "The Exponential Law of Endurance Tests," American Society for Testing and Materials Proceedings, Vol. 10, pp. 625-630.
  21. Lee, J. Y., Jung, D. W. and Choi, N. S., 2012, "Fatigue Fracture Behavior and Statistical Life Evaluation of Hybrid Composite/Metal Beam-Joints for a Low-Floor Bus," Journal of Composite Materials, Vol. 46, No. 14, pp. 1755-1764. https://doi.org/10.1177/0021998311424626
  22. Yoon, S. J. and Choi, N. S., 2011, "High Cyclic Fatigue Life and Fracture Behaviors of Shot-Peened Bearing Steel," Trans. Korean Soc. Mech. Eng. A, Vol. 35, No. 9 pp. 1119-1129. https://doi.org/10.3795/KSME-A.2011.35.9.1119