초록
디지털 정보화 시대에서 영상은 여러 매체에서 필수적으로 이용되며, 잡음은 이러한 영상을 획득, 전송하는 과정에서 여러 외부 원인에 의해 발생된다. 잡음 제거는 영상 처리에서 필수적인 과정이며, 잡음의 종류에는 발생 원인과 형태에 따라 다양한 종류가 있으며 AWGN이 대표적이다. 따라서 본 논문에서는 영상에 첨가된 잡음의 영향을 완화하기 위해, 전처리 과정으로 국부 마스크를 9개의 영역으로 구분하여 각 화소들의 평균을 이용한 에지 검출 방법을 적용한다. 그리고 변형된 에지 검출의 결과에 임계값을 적용하여 국부 마스크에 서로 다른 필터를 적용하는 알고리즘을 제안하였다. 제안한 알고리즘의 우수성을 입증하기 위해, 확대 영상 및 PSNR(peak signal to noise ratio)을 이용하여 기존의 방법들과 그 성능을 비교하였다.
In an era where digital data takes on great importance, images are essential to various media. Noise is generated during the acquisition and transmission of such images, caused by a number of external factors. The removal of noise is an essential step in image processing. There are various methods used to remove noise, in accordance with the cause or form of the noise. AWGN is one of the leading methods. As such, this paper applies the edge detection method using the mean of each pixel after categorizing in detail the partial masks into nine areas as part of the preliminary process, in order to minimize noise that had been added to the image. In addition, the paper suggests an algorithm that applies different filters to the partial masks by using the critical mass value of the transfigured edge detection. To verify the competence of the suggested algorithm, it was compared with existing methods by using magnified images and PSNR(peak signal to noise ratio).