DOI QR코드

DOI QR Code

Mechanical Property of Clay-polymer Nanofiber Composite Membrane

Clay를 함유한 Polysulfone 나노섬유 복합막의 제조 및 물리적 특성 연구

  • Park, Yeji (Department of Chemical Engineering, Keimyung University) ;
  • Yun, Jaehan (Department of Chemical Engineering, Keimyung University) ;
  • Byun, Hongsik (Department of Chemical Engineering, Keimyung University)
  • Received : 2017.06.23
  • Accepted : 2017.06.27
  • Published : 2017.06.30

Abstract

In this study, natural clay as a filler was systematically integrated into polysulfone nanofibers to prepare polysulfone/clay composite membranes with mechanical properties. The composite nanofibers were formed by electrospinning of a mixed precursor of polysulfone and clay. The pore size of the composite membranes was adjusted by simply controlling the number of layers of nanofibers. The overall membrane properties were examined by SEM, contact angle, pore characteristics, tensile strength and water flux. In particular, the presence of clay within the nanofibers was confirmed with SEM images and the mechanical property of the composite nanofiber membranes was examined by tensile strength measurements. Thus, the prepared composite membranes were expected to be utilized for water treatment system.

본 연구에서는 복합막의 물성향상을 위해 clay를 도입한 polysulfone 나노섬유 복합막을 제조하였다. Polysulfone/clay 복합막은 clay가 들어간 N,N-dimethyl acetamide와 acetone 혼합용매에 polysulfone을 첨가한 후 전기방사법을 이용하여 제조하였으며, 제조된 나노섬유 복합막은 적층수를 변화해 기공크기를 조절한 후 사용하였다. 전반적인 분리막의 특성은 SEM, contact angle, 기공특성, tensile strength, water flux 분석을 사용하여 고찰하였다. 특히 SEM image로 clay의 도입을 확인하였으며 contact angle 측정을 통해 표면이 개질된 결과를 확인할 수 있었다. 그리고 clay의 도입량에 따른 복합막의 기계적 물성을 확인하였다. 따라서 본 연구에서 제조된 분리막은 수처리용 분리막으로 충분히 활용 가능할 것으로 판단된다.

Keywords

References

  1. H. D. Lee, Y. H. Cho, and H. B. Park, "Current research trends in water treatment membranes based on nano materials and nano technologies", Membr. J., 23, 101 (2013).
  2. S. J. Kim, S. J. Lee, C. H. Woo, and S. Y. Nam, "Preparation and characterization of polysaccharide- based nanofiber using electrospinning method", Membr. J., 26, 318 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.4.327
  3. W. G. Jang, J. H. Yun, and H. S. Byun, "Preparation of PAN nanofiber composite membrane with $Fe_3O_4$ functionalized graphene oxide and its application as a water treatment membrane", Membr. J., 24, 151 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.2.151
  4. W. G. Jang, J. Hou, H. S. Byun, and J. Y. Lee, "Preparation of PVdF/$Fe_3O_4$-GO (MGO) composite membrane by using electrospinning technology and its arsenic removal characteristics", Membr. J., 26, 480 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.6.480
  5. R. Wang, Y. Liu, B. Li, B. S. Hsiao, and B. Chu, "Electrospun nanofibrous membranes for high flux microfiltration", J. Membr. Sci., 392, 167 (2012).
  6. K. H. Yoon, B. S. Hsiao, and B. Chu, "High flux nanofiltration membranes based on interfacially polymerized polyamide barrier layer on polyacrylonitrile nanofibrous scaffolds", J. Membr. Sci., 326, 484 (2009). https://doi.org/10.1016/j.memsci.2008.10.023
  7. K. M. Kyung and J. Y. Park, "Effect of GAC packing mass in hybrid water treatment process of PVdF nanofibers spiral wound microfiltration and granular activated carbon", Membr. J., 27, 68 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.1.68
  8. H. M. Jung, W. D. Chen, W. S. Yang, and H. S. Byun, "Study on the PVdF nanofibers and graphene oxide hybrid membrane", Membr. J., 23, 204 (2013).
  9. Y. H. Park and S. Y. Nam, "Characterization of water treatment membrane using various hydrophilic coating materials", Membr. J., 27, 60 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.1.60
  10. W. G. Jang, J. H. Yun, K. S. Jeon, and H. S. Byun, "PVdF/graphene oxide hybrid membrane via electrospinning for water treatment application", RSC Adv., 5, 46711 (2015). https://doi.org/10.1039/C5RA04439A
  11. S. S. Shin, S. H. Park, Y. S. Lee, M. J. Jung, and H. K. Choi, "Preparation and mechanical properties of Nylon/Clay nanocomposite", J. Korean Society of Industrial Application, 12, 5 (2009).
  12. J. S. Park, J. W. Rhim, Y. S. Chung, Y. M. Lee, and S. Y. Nam, "Gas permeable properties of elastomer- clay nanocomposite membrane", Membr. J., 16, 144 (2006).
  13. S. Almuhamed, M. Bonne, N. Khenoussi, J. Brendle, L. Schacher, B. Lebeau, and D. C. Adolphe, "Electrospinning composite nanofibers of polyacrylonitrile/synthetic Na-montmorillonite", J. Ind. Eng. Chem., 35, 146 (2016). https://doi.org/10.1016/j.jiec.2015.12.024
  14. F. Aziz, N. Ouazzani, L. Mandi, M. Muhammad, and A. Uheida, "Composite nanofibers of polyacrylonitrile/ natural clay for decontamination of water containing Pb(II), Cu(II), Zn(II) and pesticides", J. Separation Science and Technology., 52, 58 (2017). https://doi.org/10.1080/01496395.2016.1231692