DOI QR코드

DOI QR Code

Preparation of Polysulfone Microfiltration Membranes by a Sulfonated Polyethersulfone Additive

술폰산기를 가지는 폴리에테르술폰 첨가제를 이용한 폴리술폰 정밀여과막의 제조

  • Kim, Nowon (Department of Environmental Engineering, Dong-Eui University) ;
  • Jung, Boram (Department of Environmental Engineering, Dong-Eui University)
  • Received : 2017.06.19
  • Accepted : 2017.06.29
  • Published : 2017.06.30

Abstract

Polysulfone (PSF) is one of an important polymer that has been widely used in the manufacture of asymmetric microfiltration (MF) membranes. PSF membrane is considered as hydrophobic membrane that easily fouled during membrane operation process. The blending method is an effective method for improving the fouling resistance of PSF membranes. sPES (sulfonated polyethersulfone) is one of the useful polymers that can be used in PSF polymer blend method to improve hydrophilicity of PSF membranes. In this study, microfiltration polymer membranes were prepared by using PSF/sPES/PVP/BE/DMF casting solution and water coagulant. The morphology of MF membranes was changed by addition of a small amount of sPES in casting solution. The morphology of the sPES added membranes was changed into a highly asymmetric structure. The active layer grew and mean pore size was decreased by addition of sPES. However, the water flux of PSF/sPES/DMF/PVP/BE membrane was higher than that of PSF/DMF/PVP/BE membrane.

폴리술폰 고분자는 비대칭 정밀여과 멤브레인 제조에 가장 널리 사용되는 고분자 소재이다. 폴리술폰 멤브레인은 소수성 특성으로 인하여 공정상에서 빠른 막오염이 일어난다. 고분자 블렌딩은 폴리술폰 멤브레인의 수명을 향상시키는데 있어 가장 간단하고 효과적인 방법이다. sPES는 폴리술폰 블렌딩 방법을 통하여 소수성을 해결할 수 있는 유용한 친수성 고분자이다. 본 연구에서는 PSF/sPES/DMF/PVP/BE 고분자 용액을 물에 침지시켜 정밀여과 멤브레인을 제조하였다. 캐스팅 용액에 소량의 sPES 첨가함으로써 정밀여과 멤브레인 구조 변화를 볼 수 있었다. sPES의 첨가는 높은 비대칭성과 활성층의 성장, 그리고 평균 기공 크기의 감소를 가져왔다. 하지만 수투과량은 PSF/sPES/DMF/PVP/BE로 만든 멤브레인이 PSF/DMF/PVP/BE로 만든 멤브레인에 비해 더 큰 값을 보였다.

Keywords

References

  1. H. Nelson, R. Singh, R. Toledo, and N. Singh, "The use of a submerged microfiltration system for regeneration and reuse of wastewater in a fresh-cut vegetable operation", Sep. Sci. Technol., 42, 2473 (2007). https://doi.org/10.1080/01496390701477147
  2. R. van Reis and A. Zydney, "Bioprocess membrane technology", J. Membr. Sci., 297, 16 (2007). https://doi.org/10.1016/j.memsci.2007.02.045
  3. M. Mulder, "Basic Principles of Membrane Technology", pp. 71-89, Kluwer Academic Publishers, London (1996).
  4. G. Belfort, R. H. Davis, and A. L. Zydney, "The behaviour of suspensions and macromolecular solutions in crossflow microfiltration", J. Membr. Sci., 96, 1 (1994). https://doi.org/10.1016/0376-7388(94)00119-7
  5. N. Kim, "Preparation and characterization of PSF membranes by phosphoric acid and 2-butoxyethanol", Membr. J., 22, 178 (2012).
  6. M. Han, "Effect of nonsolvent additive in casting solutions on polysulfone membrane preparation", Membr. J., 6, 157 (1996).
  7. N. Kim, C.-S. Kim, and Y.-T. Lee, "Preparation and characterization of polyethersulfone membranes with p-toluenesulfonic acid and polyvinylpyrrolidone additives", Desalination, 233, 218 (2008). https://doi.org/10.1016/j.desal.2007.09.046
  8. B. G. Park, S.-H. Kong, and S. Y. Nam, "Phase behavior and morphological studies of polysulfone membranes; The effect of alcohols used as a nonsolvent coagulant", Membr. J., 15, 272 (2005).
  9. S.-J. Shin, J.-P. Kim, H.-J. Kim, J.-H. Jeon, and B.-R. Min, "Preparation and characterization of polyethersulfone microfiltration membranes by a 2-methoxyethanol additive", Desalination, 186, 1 (2005). https://doi.org/10.1016/j.desal.2005.03.092
  10. J. M. Greenwood, J. S. Johnson, and M. J. Witham, "Preparation of polyethersulfone membranes", US Patent 6,056,903, May 2 (2000).
  11. W. J. Wrasidlo, "Dispersing casting of integral skinned highly asymmetric polymer membranes", US Patent 4,774,039, Sep 9 (1988).
  12. R. F. Zepf, "Ultraporous and microporous membranes and method of making membranes", US Patent 5,171,445, Mar 26 (1992).
  13. V. P. Khare, A. R. Greenberg, and W. B. Krantz, "Vapor-induced phase separation-effect of the humid air exposure step on membrane morphology. Part I. Insight from mathematical modeling", J. Membr. Sci., 258, 140 (2005). https://doi.org/10.1016/j.memsci.2005.03.015
  14. J. F. Li, Z. L. Xu, and H. Yang, "Microporous polyethersulfone membranes prepared under the combined precipitation conditions with non-solvent additives", Polym. Adv. Technol., 19, 251 (2008). https://doi.org/10.1002/pat.982
  15. Y. Liu, G. H. Koops, and H. Strathmann, "Characterization of morphology controlled polyethersulfone hollow fiber membrane by the addition of polyethylene glycol to the dope and bore liquid solution", J. Membr. Sci., 223, 187 (2003). https://doi.org/10.1016/S0376-7388(03)00322-3
  16. R. M. Boom, H. W. Reinders, H. H. W. Rolevink, Th. van den Boomgaard, and C. A. Smolders, "Equilibrium thermodynamics of a quaternary membrane-forming system with two polymers". I. Experiments, Macromolecules, 27, 2041 (1994). https://doi.org/10.1021/ma00086a010
  17. R. M. Boom, I. M. Wienk, Th. Van den Boomgaard, and C. A. Smolders, "Microstructures in phase inversionmembranes. Part 2. The role of a polymeric additive", J. Membr. Sci., 73, 277 (1992). https://doi.org/10.1016/0376-7388(92)80135-7
  18. B. Chakrabarty, A. K. Ghoshal, and M. K. Purkait, "Effect of molecular weight of PEG on membrane morphology and transport properties", J. Membr. Sci., 309, 209 (2008). https://doi.org/10.1016/j.memsci.2007.10.027
  19. J. H. Kim and K. H. Lee, "Effect of PEG additive on membrane formation by phase separation", J. Membr. Sci., 138, 153 (1998). https://doi.org/10.1016/S0376-7388(97)00224-X
  20. I. F. Wang, R. A. Morris, and R. F. Zepf, "Highly asymmetric, hydrophilic, microfiltration membranes having large pore diameters", US Patent 7,125,493, Oct 24 (2006).
  21. J. J. Qin, M. H. Oo, and Y. Li, "Development of high flux polyethersulfone hollow fiber ultrafiltration membranes from a low a critical solution temperature dope via hypochlorite treatment", J. Membr. Sci., 247, 137 (2005). https://doi.org/10.1016/j.memsci.2004.09.018
  22. B. Jung and N. Kim, "Preparation and characterization of microfiltration membranes for water treatment", Membr. J., 24, 50 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.1.50