DOI QR코드

DOI QR Code

Performance of Membrane Capacitive Deionization Process Using Polyvinylidene Fluoride Heterogeneous Ion Exchange Membranes Part II : Performance Study of Membrane Capacitive Deionization Process

폴리비닐플루오라이드 불균질 이온교환막을 이용한 막 결합형 축전식 탈염공정의 탈염성능 Part II : 불균질 이온교환막의 탈염성능

  • Park, Cheol Oh (Department of Advanced Materials and Chemical Engineering, Hannam University) ;
  • Rhim, Ji Won (Department of Advanced Materials and Chemical Engineering, Hannam University)
  • 박철오 (한남대학교 화공신소재공학과) ;
  • 임지원 (한남대학교 화공신소재공학과)
  • Received : 2017.06.19
  • Accepted : 2017.06.27
  • Published : 2017.06.30

Abstract

In this study, the heterogeneous ion exchange membranes prepared by the combination of the carbon electrode and mixed the cation and anion exchange polymers and polyvinylidene fluoride as the basic polymer together were made to recognize the efficiency of the salt removal for the application of the membrane capacitive deionization process. The mixing weight ratio of the solvent, basic polymer and ion exchange resin was 7 : 2 : 1 and this mixed solution was directly cast on the electrode. As for the operating conditions of the adsorption voltage and time, feed flow rate, desorption voltage and time of the feed solution NaCl 100 mg/L, the salt removal efficiencies (SRE) were measured. Apart from this NaCl, the $CaCl_2$ and $MgSO_4$ solutions were investigated in terms of SRE as well. Typically, SRE for NaCl 100 mg/L solution under the conditions of adsorption voltage/time, 1.5 V/3 min, desorption voltage/time -0.1 V/3 min, was shown 98%. And for the $CaCl_2$ and $MgSO_4$ solutions, the SREs of 70 and 59% were measured under the conditions of adsorption voltage/time, 1.2 V/3 min, desorption voltage/time -0.5 V/5 min, respectively.

본 연구에서는 막 결합형 축전식 탈염공정에 적용을 위해 폴리비닐플루오라이드를 고분자 지지체로 사용하여 양이온 및 음이온교환수지를 배합하여 제작된 불균질 이온교환막을 탄소전극에 결합하여 염 제거 효율을 알아보고자 하였다. 불균질 이온교환막의 배합 조건은 용매, 고분자 지지체, 이온교환수지를 7 : 2 : 1의 무게 비율로 하였으며 탄소전극에 직접 캐스팅 하였다. 운전조건으로 공급액은 주로 NaCl 수용액에 대하여 흡착전압, 시간, 공급액의 농도, 유속, 탈착전압, 시간 등에 대하여 염 제거 효율을 측정하였으며 이 외에 $CaCl_2$$MgSO_4$ 수용액에 대하여서도 측정하였다. 대표적으로 NaCl 100 mg/L 용액의 15 mL/min에서 1.5 V, 3분의 흡착조건, -0.1 V, 3분의 탈착조건에서 98%의 염 제거 효율을 보였으며, $CaCl_2$$MgSO_4$는 100 mg/L, 15 mL/min에서 1.2 V, 3분의 흡착조건, -0.5 V, 5분의 탈착조건에서 각각 70, 59%의 염 제거 효율을 보였다.

Keywords

References

  1. T. J. Welgemoed and C. F. Schutte, "Capacitive deionization technology: An alternative desalination solution", Desalination, 183, 1 (2005). https://doi.org/10.1016/j.desal.2005.04.021
  2. H. H. Jung and S. W. Hwang, "Capacitive deionization characteristics of nanostructured carbon aerogel electrodes synthesized via ambient drying", Desalination, 216, 377 (2007). https://doi.org/10.1016/j.desal.2006.11.023
  3. M. W. Ryoo and G, Seo, "Improvement in capacitive deionization function of actived carbon by titania modification", Water Res., 37, 1527 (2003). https://doi.org/10.1016/S0043-1354(02)00531-6
  4. C. H. Hou, C. Liang, S. Yiacoumi, S. Dai, and C. Tsouris, "Electrosorption of ions from queous solutions by nanostructured carbon aerogel", J. Colloid Interface Sci., 250, 18 (2002). https://doi.org/10.1006/jcis.2002.8314
  5. Y. Cai, Y. Wang, X. Han, L. Zhang, S. Xu, and J. Wang, "Optimization on electrode assemblies based on ion-doped polypyrrole/carbon nanotube composite in capacitive deionization process", J. Electronal. Chem., 768, 72 (2016). https://doi.org/10.1016/j.jelechem.2016.02.041
  6. J. H. Choi, "Fabrication of a carbon electrode using activated carbon powder and application to the capacitive deionization process", Water Res., 70, 362 (2010).
  7. P. M. Biesheuvel and A. van der Wal, "Membrane capacitive deionization", J. Membr. Sci., 346, 256 (2010). https://doi.org/10.1016/j.memsci.2009.09.043
  8. K. Bohinc, V. Kralj-Iglic, and A. Iglic, "Thickness of electrical double layer. Effect of ion size", Electrochim Acta., 46, 3033 (2001). https://doi.org/10.1016/S0013-4686(01)00525-4
  9. Y. J. Kim and J. H. Choi, "Improvement of desalination efficiency in capacitive deionization using a carbon electrode coated with an ion-exchange polymer", Water Res., 44, 990 (2010). https://doi.org/10.1016/j.watres.2009.10.017
  10. H. Li and L. Zou, "Ion-exchange membrane capacitive deionization: A new strategy for brackish water desalination", Desalination, 275, 62 (2011). https://doi.org/10.1016/j.desal.2011.02.027
  11. J. Schauer and L. Brozova, "Heterogeneous ion-exchange membranes based on sulfonated poly (1,4-phenylene sulfide) and linear polyethylene: preparation, oxidation stability, methanol permeability and electrochemical properties", J. Membr. Sci., 250, 151 (2005). https://doi.org/10.1016/j.memsci.2004.09.047
  12. C. O. Park and J. W. Rhim "Performance of membrane capacitive deionization process using polyvinylidene fluoride heterogeneous ion exchange membranes part I : Preparation and characterization of heterogeneous ion exchange membranes", Membr. J., 27, 84 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.1.84
  13. H. Li, L. Pan, Y. Zhang, L, Zou, C. Sun, Y. Zhan and Z. Sun, "Kinetics and thermodynamics study for electrosorption of NaCl onto carbon nanotubes and carbon nanofibers electrodes", Chem. Phys. Lett., 485, 161 (2010). https://doi.org/10.1016/j.cplett.2009.12.031
  14. Y. S. Jeon, "Design of various cell types and their performance evaluation in MCDI process" MS Dissertation, Univ of Hannam, Daejeon, Korea (2017).