DOI QR코드

DOI QR Code

1-Butyl-3-methylimidazolium tetrafluoroborate/Al2O3 Composite Membrane for CO2 Separation

이산화탄소 분리를 위한 이온성 액체 1-butyl-3-methylimidazolium tetrafluoroborate/Al2O3 복합체 분리막

  • 윤기완 (상명대학교 자연과학대학 화학과) ;
  • 강상욱 (상명대학교 자연과학대학 화학과)
  • Received : 2017.05.19
  • Accepted : 2017.06.20
  • Published : 2017.06.30

Abstract

1-Butyl-3-methylimidazolium tetrafluoroborate ($BMIM^+BF_4{^-}$) and $Al_2O_3$ as metal oxide for preparation of composite membrane were utilized for the $CO_2$ separation. When 13 nm $Al_2O_3$ nanoparticles were incorporated into ionic liquid $BMIM^+BF_4{^-}$, the separation performance for composite membrane showed the selectivity ($CO_2/N_2$) of 30.5 and $CO_2$ permeance of 45.7 GPU. The enhanced separation performance was attributable to the increased $CO_2$ solubility by both oxide layer of $Al_2O_3$ and abundant free ions of ionic liquid. In particular, $Al_2O_3$ nanoparticles acted as obstacles to nitrogen gas, resulting in the decrease of permeability of nitrogen gas. As a result, the carbon dioxide separation performance could be enhanced.

이산화탄소 분리를 위해 이온성 액체/금속 산화물 복합막이 제조되었으며, 이온성 액체로서 1-butyl-3-methylimidazolium tetrafluoroborate ($BMIM^+BF_4{^-}$)와 금속산화물로서 $Al_2O_3$가 사용되었다. 13 nm의 $Al_2O_3$가 이온성 액체 $BMIM^+BF_4{^-}$에 도입되었을 때, 복합체 분리막의 성능은 $CO_2/N_2$ 선택도 30.5과 $CO_2$ 투과도 45.7 GPU로 관찰되었다. neat $BMIM^+BF_4{^-}$ 분리막의 성능($CO_2/N_2$ 선택도 5와 $CO_2$ 투과도 17 GPU)에 비해서 성능이 증가한 이유는 $Al_2O_3$의 옥사이드 층과 이온성 액체 내 자유로운 이온농도의 상승으로 인해 $CO_2$ 용해도가 상승한 것으로 확인되었다. 특히 $Al_2O_3$ 나노입자는 질소 기체에 대해서 장애물로서 작용함으로써 질소기체의 투과도가 감소하여 결과적으로 이산화탄소 분리 성능은 급격히 증가하였다.

Keywords

References

  1. M. R. Raupach, G. Marland, P. Ciais, C. Le Quere, J. G. Canadell, G. Klepper, and C. B. Field, "Global and regional drivers of accelerating $CO_2$ emissions", Proc. Natl. Acad. Sci. U. S. A., 104, 10288 (2007). https://doi.org/10.1073/pnas.0700609104
  2. J.-R. Li, Y. Ma, M. C. McCarthy, J. Sculley, J. Yu, H.-K. Jeong, P. B. Balbuena, and H.-C. Zhou, "Carbon dioxide capture-related gas adsorption and separation in metal-organic frameworks", Coord. Chem. Rev., 255, 1791 (2011). https://doi.org/10.1016/j.ccr.2011.02.012
  3. M. L. Parry, "Climate Change 2007: Impacts, Adaptation and Vulnerability: Working Group I Contribution to the Fourth Assessment Report of the IPCC", Cambridge University Press (2007).
  4. D. Keith, "Why capture $CO_2$ from the atmosphere", Science, 325, 1654 (2009). https://doi.org/10.1126/science.1175680
  5. M. S. A. Rahaman, L. H. Cheng, X. H. Xu, L. Zhang, and H. L. Chen, "A review of carbon dioxide capture and utilization by membrane integrated microalgal cultivation processes", Renew. Sustain. Ener. Rev., 15, 4002 (2011). https://doi.org/10.1016/j.rser.2011.07.031
  6. D. M. D'Alessandro, B. Smit, and J. R. Long, "Carbon dioxide capture: Prospects for new materials", Angew. Chem. Int. Ed., 49, 6058 (2010). https://doi.org/10.1002/anie.201000431
  7. Q. Wang, J. Luo, Z. Zhong, and A. Borgna, "$CO_2$ capture by solid adsorbents and their applications: current status and new trends", Energy Environ. Sci., 4, 42 (2011). https://doi.org/10.1039/C0EE00064G
  8. E. S. Rubin, "$CO_2$ capture and transport", Elements, 4, 311 (2008). https://doi.org/10.2113/gselements.4.5.311
  9. H. Chen, G. Obuskovic, S. Majumdar, and K. Sirkar, "Immobilized glycerol-based liquid membranes in hollow fibers for selective $CO_2$ separation from $CO_2$-$N_2$ mixtures", J. Membr. Sci., 183, 75 (2001). https://doi.org/10.1016/S0376-7388(00)00581-0
  10. O. Karvan, J. R. Johnson, P. Williams, and W. Koros, "A pilot‐scale system for carbon molecular sieve hollow fiber membrane manufacturing", Chem. Eng. Technol., 36, 53 (2013). https://doi.org/10.1002/ceat.201200503
  11. A. S. Kovvali and K. Sirkar, "Dendrimer liquid membranes: $CO_2$ separation from gas mixtures", Ind. Eng. Chem. Res., 40, 2502 (2001). https://doi.org/10.1021/ie0010520
  12. M. J. Earle, J. M. S. S. Esperanca, M. A. Gilea, J. N. Canongia Lopes, L. P. N. Rebelo, J. W. Magee, K. R. Seddon, and J. A. Widegren, "The distillation and volatility of ionic liquids", Nature, 439, 831 (2006). https://doi.org/10.1038/nature04451
  13. J. L. Anderson, R. Ding, A. Ellern, and D. W. Armstrong, "Structure and properties of high stability geminal dicationic ionic liquids", J. Am. Chem. Soc., 127, 593 (2005). https://doi.org/10.1021/ja046521u
  14. M. Smiglak, W. M. Reichert, J. D. Holbrey, J. S. Wilkes, L. Sun, J. S. Thrasher, K. Kirichenko, S. Singh, A. R. Katritzky, and R. D. Rogers, "Combustible ionic liquids by design: is laboratory safety another ionic liquid myth", Chem. Commun., 24, 2554 (2006).
  15. H. Ohno, M. Yoshizawa, and T. Mizumo, "in Electrochemical Aspects of Ionic Liquids, ed. H. Ohno, John Wiley & Sons, Inc", New Jersey (2005).
  16. C. Cadena, J. L. Anthony, J. K. Shah, T. I. Morrow, J. F. Brennecke, and E. J. Maginn, "Why is $CO_2$ so soluble in imidazolium-based ionic liquids", J. Am. Chem. Soc., 126, 5300 (2004). https://doi.org/10.1021/ja039615x
  17. J. L. Anthony, J. L. Anderson, E. J. Maginn, and J. F. Brennecke, "Anion Effects on Gas Solubility in Ionic Liquids", J. Phys. Chem. B, 109, 6366 (2005). https://doi.org/10.1021/jp046404l
  18. J. L. Anderson, J. K. Dixon, and J. F. Brennecke, "Solubility of $CO_2$, $CH_4$, $C_2H_6$, $C_2H_4$ $O_2$, and $N_2$ in 1-hexyl-3-methylpyridinium bis(trifluoromethylsulfonyl) imide: Comparison to other ionic liquids", Acc. Chem. Res., 40, 1208 (2007). https://doi.org/10.1021/ar7001649
  19. M. J. Muldoon, S. N. V. K. Aki, J. L. Anderson, J. K. Dixon, and J. F. Brennecke, "Improving carbon dioxide solubility in ionic liquids", J. Phys. Chem. B, 111, 9001 (2007). https://doi.org/10.1021/jp071897q
  20. C. Wang, X. Luo, H. Luo, D.-e. Jiang, H. Li, and S. Dai, "Tuning the Basicity of Ionic Liquids for Equimolar $CO_2$ Capture", Angew. Chem., Int. Ed., 50, 4918 (2011). https://doi.org/10.1002/anie.201008151
  21. G. Wang, W. Hou, F. Xiao, J. Geng, Y. Wu, and Z. Zhang, "Lowviscosity triethylbutylammonium acetate as a task-specific ionic liquid for reversible $CO_2$ absorption", J. Chem. Eng. Data., 56, 1125 (2011). https://doi.org/10.1021/je101014q
  22. S. D. Yoo, J. Won, S. W. Kang, Y. S. Kang, and S, Nagase, "$CO_2$ separation membranes using ionic liquids in a Nafion matrix", J. Membr. Sci., 363, 72 (2010). https://doi.org/10.1016/j.memsci.2010.07.013
  23. K. Huang, X. M. Zhang, Y. X, Li, Y. T. Wu, and X. B. Hu, "Facilitated separation of $CO_2$ and $SO_2$ through supported liquid membranes using carboxylate- based ionic liquids", J. Membr. Sci., 471, 227 (2014). https://doi.org/10.1016/j.memsci.2014.08.022
  24. D. H. Ji, Y. S. Kang, and S. W. Kang, "Accelerated $CO_2$ transport on surface of AgO nanoparticles in ionic liquid $BMIMBF_4$", Sci. Rep., 5, 16362 (2015). https://doi.org/10.1038/srep16362
  25. K. W. Yoon, H. Kim, Y. S. Kang, and S. W. Kang, "1-Butyl-3-methylimidazolium tetrafluoroborate/ zinc oxide composite membrane for high $CO_2$ separation performance", Chem. Eng. J., 320, 50 (2017). https://doi.org/10.1016/j.cej.2017.03.026