DOI QR코드

DOI QR Code

Current Status and Perspectives of Graphene-based Membranes for Gas Separation

그래핀 기반 기체 분리막의 연구동향 및 전망

  • Yoo, Byung Min (Department of Energy Engineering, Hanyang University) ;
  • Park, Ho Bum (Department of Energy Engineering, Hanyang University)
  • 유병민 (한양대학교 에너지공학과) ;
  • 박호범 (한양대학교 에너지공학과)
  • Received : 2017.06.27
  • Accepted : 2017.06.28
  • Published : 2017.06.30

Abstract

Since the experimental proof of one-atom-thick graphene single layer from graphite in 2004, graphene, as a leading material opening two-dimensional world, has been tremendously investigated owing to its intrinsic extraordinary physical properties. Among many promising graphene applications, it is believed that membranes might be one of the first significant applications for graphene and its derivatives (e.g., graphene oxide). Recently, a number of simulation results and proof-of-concept experimental approaches towards graphene membranes reflect such positive prospects. Moreover, graphene and graphene oxide already show many outstanding intrinsic properties suitable for promising membrane platforms, such as the minimum membrane thickness, excellent mechanical strength, high chemical and thermal stability, and the ability to generate nanopores in the two-dimensional, rigid hexagonal lattices or to create slit-like nanochannels between adjacent sheets. In this paper, important theoretical and experimental developments in graphene or graphene oxide-based membranes for gas separation based on intrinsic properties of graphene and its derivatives will be discussed, emphasizing on transport behavior, membrane formation methods, and challenging issues for actual membrane applications.

원자 수준의 두께를 가지는 그래핀 단일층이 흑연으로부터 박리되어 구현된 이래로, 그래핀은 2차원 소재의 활용 가능성을 연 물질로서 각광받고 있으며, 그래핀 고유의 뛰어난 물리적 특성으로 인하여 활발히 연구되고 있다. 특히 분리막 분야는 그래핀과 산화 그래핀이 활용 가능한 가장 중요한 분야 중의 하나로서, 최근의 다양한 시뮬레이션 연구를 통하여 그 가능성이 입증되고 있다. 그래핀과 산화 그래핀은 원자 수준의 얇은 두께, 뛰어난 기계적 강도, 높은 수준의 내화학성, 기공생성이 가능한 2차원 구조 또는 기체 확산 유로 생성이 가능한 적층 구조 등 분리막 소재로서 매우 유리한 특성들을 보유하고 있음이 밝혀졌다. 본 총설에서는 그래핀과 산화 그래핀의 고유 특성을 기반으로 기체 분리막 분야로의 응용 가능성과 현재까지의 개발 현황 및 향후 전망에 대하여 논하고자 한다.

Keywords

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, "Electric field effect in atomically thin carbon films", Science, 306, 666 (2004). https://doi.org/10.1126/science.1102896
  2. C. Lee, X. D. Wei, J. W. Kysar, and J. Hone, "Measurement of the elastic properties and intrinsic strength of monolayer graphene", Science, 321, 385 (2008). https://doi.org/10.1126/science.1157996
  3. E. V. Kharanzhevskiy and T. A. Pisareva, "Dispersity of materials obtained by mechanical activation and laser sintering of Al-C systems and used for production of electrochemical capacitors", Colloid J., 74, 373 (2012). https://doi.org/10.1134/S1061933X12030064
  4. E. G. Steward, B. P. Cook, and E. A. Kellett, "Dependence on temperature of the interlayer spacing in carbons of different graphitic perfection", Nature, 187, 1015 (1960). https://doi.org/10.1038/1871015a0
  5. D. Yoon, Y. W. Son, and H. Cheong, "Negative thermal expansion coefficient of graphene measured by raman spectroscopy", Nano Lett., 11, 3227 (2011). https://doi.org/10.1021/nl201488g
  6. A. A. Balandin, "Thermal properties of graphene and nanostructured carbon materials", Nat. Mater., 10, 569 (2011). https://doi.org/10.1038/nmat3064
  7. S. Ghosh, D. L. Nika, E. P. Pokatilov, and A. A. Balandin, "Heat conduction in graphene: experimental study and theoretical interpretation", New J. Phys., 11, 1 (2009).
  8. F. Banhart, J. Kotakoski, and A. V. Krasheninnikov, "Structural Defects in Graphene", ACS Nano, 5, 26 (2011). https://doi.org/10.1021/nn102598m
  9. M. D. Fischbein and M. Drndic, "Electron beam nanosculpting of suspended graphene sheets", Appl. Phys. Lett., 93, 113107-1 (2008). https://doi.org/10.1063/1.2980518
  10. K. Celebi, J. Buchheim, R. M. Wyss, A. Droudian, P. Gasser, I. Shorubalko, J. I. Kye, C. Lee, and H. G. Park, "Ultimate permeation across atomically thin porous graphene", Science, 344, 289 (2014). https://doi.org/10.1126/science.1249097
  11. S. P. Koenig, L. D. Wang, J. Pellegrino, and J. S. Bunch, "Selective molecular sieving through porous graphene", Nat. Nanotechnol., 7, 728 (2012). https://doi.org/10.1038/nnano.2012.162
  12. S. C. O'Hern, M. S. H. Boutilier, J. C. Idrobo, Y. Song, J. Kong, T. Laoui, M. Atieh, and R. Karnik, "Selective ionic transport through tunable subnanometer pores in single-layer graphene membranes", Nano Lett., 14, 1234 (2014). https://doi.org/10.1021/nl404118f
  13. J. W. Bai, X. Zhong, S. Jiang, Y. Huang, and X. F. Duan, "Graphene nanomesh", Nat. Nanotechnol., 5, 190 (2010). https://doi.org/10.1038/nnano.2010.8
  14. M. Bieri, M. Treier, J. M. Cai, K. Ait-Mansour, P. Ruffieux, O. Groning, P. Groning, M. Kastler, R. Rieger, X. L. Feng, K. Mullen, and R. Fasel, "Porous graphenes: two-dimensional polymer synthesis with atomic precision", Chem. Commun., 45, 6919 (2009).
  15. M. Segal, "Selling graphene by the ton", Nat. Nanotechnol., 4, 611 (2009).
  16. S. Park and R. S. Ruoff, "Chemical methods for the production of graphenes", Nat. Nanotechnol., 4, 217 (2009). https://doi.org/10.1038/nnano.2009.58
  17. H. Bai, C. Li, X. L. Wang, and G. Q. Shi, "On the Gelation of Graphene Oxide", J. Phys. Chem. C, 115, 5545 (2011).
  18. L. Huang, C. Li, W. J. Yuan, and G. Q. Shi, "Strong composite films with layered structures prepared by casting silk fibroin-graphene oxide hydrogels", Nanoscale, 5, 3780 (2013). https://doi.org/10.1039/c3nr00196b
  19. S. F. Pei and H. M. Cheng, "The reduction of graphene oxide", Carbon, 50, 3210 (2012). https://doi.org/10.1016/j.carbon.2011.11.010
  20. X. F. Ma, M. R. Zachariah, and C. D. Zangmeister, "Crumpled Nanopaper from Graphene Oxide", Nano Lett., 12, 486 (2012). https://doi.org/10.1021/nl203964z
  21. C. H. Tsou, Q. F. An, S. C. Lo, M. De Guzman, W. S. Hung, C. C. Hu, K. R. Lee, and J. Y. Lai, "Effect of microstructure of graphene oxide fabricated through different self-assembly techniques on 1-butanol dehydration", J. Membr. Sci, 477, 93 (2015). https://doi.org/10.1016/j.memsci.2014.12.039
  22. C. N. Yeh, K. Raidongia, J. J. Shao, Q. H. Yang, and J. X. Huang, "On the origin of the stability of graphene oxide membranes in water", Nat. Chem., 7, 166 (2015). https://doi.org/10.1038/nchem.2145
  23. H. W. Kim, H. W. Yoon, S. M. Yoon, B. M. Yoo, B. K. Ahn, Y. H. Cho, H. J. Shin, H. Yang, U. Paik, S. Kwon, J. Y. Choi, and H. B. Park, "Selective gas transport through few-layered graphene and graphene oxide membranes", Science, 342, 91 (2013). https://doi.org/10.1126/science.1236098
  24. A. Akbari, P. Sheath, S. T. Martin, D. B. Shinde, M. Shaibani, P. C. Banerjee, R. Tkacz, D. Bhattacharyya, and M. Majumder, "Large-area graphene- based nanofiltration membranes by shear alignment of discotic nematic liquid crystals of graphene oxide", Nat. Commun., 7, 1 (2016).
  25. R. R. Nair, H. A. Wu, P. N. Jayaram, I. V. Grigorieva, and A. K. Geim, "Unimpeded permeation of water through helium-leak-tight graphene-based membranes", Science, 335, 442 (2012). https://doi.org/10.1126/science.1211694
  26. H. Li, Z. N. Song, X. J. Zhang, Y. Huang, S. G. Li, Y. T. Mao, H. J. Ploehn, Y. Bao, and M. Yu, "Ultrathin, molecular-sieving graphene oxide membranes for selective hydrogen separation", Science, 342, 95 (2013). https://doi.org/10.1126/science.1236686
  27. T. C. Merkel, H. Q. Lin, X. T. Wei, and R. Baker, "Power plant post-combustion carbon dioxide capture: An opportunity for membranes", J. Membr. Sci., 359, 126 (2010). https://doi.org/10.1016/j.memsci.2009.10.041
  28. Z. J. Fan, Q. K. Zhao, T. Y. Li, J. Yan, Y. M. Ren, J. Feng, and T. Wei, "Easy synthesis of porous graphene nanosheets and their use in supercapacitors", Carbon, 50, 1699 (2012). https://doi.org/10.1016/j.carbon.2011.12.016
  29. M. Koinuma, C. Ogata, Y. Kamei, K. Hatakeyama, H. Tateishi, Y. Watanabe, T. Taniguchi, K. Gezuhara, S. Hayami, A. Funatsu, M. Sakata, Y. Kuwahara, S. Kurihara, and Y. Matsumoto, "Photochemical engineering of graphene oxide nanosheets", J. Phys. Chem. C, 116, 19822 (2012). https://doi.org/10.1021/jp305403r
  30. B. D. Freeman, "Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes", Macromolecules, 32, 375 (1999). https://doi.org/10.1021/ma9814548
  31. L. M. Robeson, "The upper bound revisited", J. Membr. Sci., 320, 390 (2008). https://doi.org/10.1016/j.memsci.2008.04.030
  32. K. M. Kyung and J. Y. Park, "Effect of GAC packing mass in hybrid water treatment process of PVdF nanofibers spiral wound microfiltration and granular activated carbon", Membr. J., 27, 68 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.1.68
  33. S. J. Kim, J. P. Jung, D. J. Kim, and J. H. Kim, "Effect of mesoporous $TiO_2$ in facilitated olefin transport membranes contaning Ag nanoparticles", Membr. J., 25, 398 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.5.398
  34. J. H. Lee and J. Kim, "Research trends of metalorganic framework membranes: Fabrication methods ans gas separation applications", Membr. J. 25, 465 (2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.6.465
  35. M. Karunakaran, R. Shevate, M. Kumar, and K. V. Peinemann, "$CO_2$-selective PEO-PBT ($PolyActive^{TM}$)/ graphene oxide composite membranes", Chem. Commun., 51, 14187 (2015). https://doi.org/10.1039/C5CC04999G