DOI QR코드

DOI QR Code

Survey of research on the optimal design of sea harbours

  • Diab, Hassan (Charles Delaunay Institute, Mechanical System and Concurrent Engineering Laboratory (ICD-LASMIS), UMR CNRS 6281, University of Technologie of Troyes (UTT)) ;
  • Younes, Rafic (Lebanese University, Faculty of Engineering) ;
  • Lafon, Pascal (Charles Delaunay Institute, Mechanical System and Concurrent Engineering Laboratory (ICD-LASMIS), UMR CNRS 6281, University of Technologie of Troyes (UTT))
  • Received : 2016.01.28
  • Accepted : 2016.12.25
  • Published : 2017.07.31

Abstract

The design of harbours, as with any other system design, must be an optimization process. In this study, a global examination of the different constraints in coastal engineering was performed and an optimization problem was defined. The problem has multiple objectives, and the criteria to be minimized are the structure cost and wave height disturbance inside a harbour. As concluded in this survey, the constraints are predefined parameters, mandatory constraints or optional constraints. All of these constraints are categorized into four categories: environmental, fluid mechanical, structural and manoeuvring.

Keywords

References

  1. Airoldi, L., Abbiati, M., Beck, M.W., Hawkins, S.J., Jonsson, P.R., Martin, D., Moschella, P.S., Sundelof, A., Thompson, R.C., Aberg, P., 2005. An ecological perspective on the deployment and design of low-crested and other hard coastal defence structures. Coast. Eng. 52, 1073-1087. http://dx.doi.org/10.1016/j.coastaleng.2005.09.007.
  2. Airy, G.B., 1845. Tides and wave. In: Encyclopedia Metropolitana.
  3. Akoz, M.S., Cobaner, M., Kirkgoz, M.S., Oner, A.A., 2011. Prediction of geometrical properties of perfect breaking waves on composite breakwaters. Appl. Ocean Res. 33, 178-185. http://dx.doi.org/10.1016/j.apor.2011.03.003.
  4. Alises, A., Molina, R., Gomez, R., Pery, P., Castillo, C., 2014. Overtopping hazards to port activities: application of a new methodology to risk management (POrt Risk MAnagement Tool). Reliab. Eng. Syst. Saf. 123, 8-20. http://dx.doi.org/10.1016/j.ress.2013.09.005.
  5. Bates, P.D., Dawson, R.J., Hall, J.W., Horritt, M.S., Nicholls, R.J., Wicks, J., Hassan, M.A.A.M., 2005. Simplified two-dimensional numerical modelling of coastal flooding and example applications. Coast. Eng. 52, 793-810. http://dx.doi.org/10.1016/j.coastaleng.2005.06.001.
  6. Battjes, J.A., 2006. Developments in coastal engineering research. Coast. Eng. 53, 121-132. http://dx.doi.org/10.1016/j.coastaleng.2005.10.002.
  7. Belibassakis, K.A., Athanassoulis, G.A., 2002. Extension of second-order Stokes theory to variable bathymetry. J. Fluid Mech. 464, 35-80. http://dx.doi.org/10.1017/S0022112002008753.
  8. Berkhoff, J.C.W., 1976. Mathematical Models for Simple Harmonic Linear Water Waves: Wave Diffraction and Refraction (Ph.D. thesis) - Tech. Hogeschool Delft, Neth.. Delft Hydraulics Lab, Netherlands.
  9. Bosworth, G.F., 1915. Ships, Shipping and Fishing ;: with Some Account of Our Seaports and Their Industries. University Press, Cambridge.
  10. Bouma, J.J., Francois, D., Schram, A., Verbeke, T., 2009. Assessing socio-economic impacts of wave overtopping: an institutional perspective. Coast. Eng. 56, 203-209. http://dx.doi.org/10.1016/j.coastaleng.2008.03.008.
  11. Boussinesq, J., 1872. Theorie des ondes et des remous qui se propagent le long d'un canal rectangulaire horizontal, en communiquant au liquide contenu dans ce canal des vitesses sensiblement pareilles de la surface au fond. J. Math. Pures Appl. 17, 55-108.
  12. Bowman, D., Pranzini, E., 2003. Reversed responses within a segmented detached breakwater, the Tuscany coast Italy-a case study. Coast. Eng. 49, 263-274. http://dx.doi.org/10.1016/S0378-3839(03)00063-2.
  13. Breitkopf, P., Coelho, R.F. (Eds.), 2010. Multidisciplinary Design Optimization in Computational Mechanics. ISTE . John Wiley & Sons, London, UK ;: Hoboken, NJ.
  14. Briganti, R., Dodd, N., 2009. On the role of shoreline boundary conditions in wave overtopping modelling with non-linear shallow water equations. Coast. Eng. 56, 1061-1067. http://dx.doi.org/10.1016/j.coastaleng.2009.06.011.
  15. Bruce, T., van der Meer, J.W., Franco, L., Pearson, J.M., 2009. Overtopping performance of different armour units for rubble mound breakwaters. Coast. Eng. 56, 166-179. http://dx.doi.org/10.1016/j.coastaleng.2008.03.015.
  16. Bruun, P., Kjelstrup, S., 1981. Practical views on the design and construction of mound breakwaters. Coast. Eng. 5, 171-192. http://dx.doi.org/10.1016/0378-3839(81)90014-4.
  17. Burcharth, H.F., Sorensen, J.D., 2006. On optimum safety levels of breakwaters. In: Proceedings of the 31st PIANC Congress, Estoril, Portugal.
  18. Burt, J.A., Feary, D.A., Cavalcante, G., Bauman, A.G., Usseglio, P., 2013. Urban breakwaters as reef fish habitat in the Persian Gulf. Mar. Pollut. Bull. 72, 342-350. http://dx.doi.org/10.1016/j.marpolbul.2012.10.019.
  19. Burt, J., Bartholomew, A., Bauman, A., Saif, A., Sale, P.F., 2009. Coral recruitment and early benthic community development on several materials used in the construction of artificial reefs and breakwaters. J. Exp. Mar. Biol. Ecol. 373, 72-78. http://dx.doi.org/10.1016/j.jembe.2009.03.009.
  20. Cai, F., Su, X., Liu, J., Li, B., Lei, G., 2009. Coastal erosion in China under the condition of global climate change and measures for its prevention. Prog. Nat. Sci. 19, 415-426. http://dx.doi.org/10.1016/j.pnsc.2008.05.034.
  21. Castillo, C., Minguez, R., Castillo, E., Losada, M.A., 2006. An optimal engineering design method with failure rate constraints and sensitivity analysis. Application to composite breakwaters. Coast. Eng. 53, 1-25. http://dx.doi.org/10.1016/j.coastaleng.2005.09.016.
  22. Cavaleri, L., Alves, J.-H.G.M., Ardhuin, F., Babanin, A., Banner, M., Belibassakis, K., Benoit, M., Donelan, M., Groeneweg, J., Herbers, T.H.C., Hwang, P., Janssen, P.A.E.M., Janssen, T., Lavrenov, I.V., Magne, R., Monbaliu, J., Onorato, M., Polnikov, V., Resio, D., Rogers, W.E., Sheremet, A., McKee Smith, J., Tolman, H.L., van Vledder, G., Wolf, J., Young, I., 2007. Wave modelling - the state of the art. Prog. Oceanogr. 75, 603-674. http://dx.doi.org/10.1016/j.pocean.2007.05.005.
  23. Chaves, L.P., Cunha, J., 2014. Design of carbon fiber reinforcement of concrete slabs using topology optimization. Constr. Build. Mater. 73, 688-698. http://dx.doi.org/10.1016/j.conbuildmat.2014.10.011.
  24. Chin, H.C., Debnath, A.K., 2009. Modeling perceived collision risk in port water navigation. Saf. Sci. 47, 1410-1416. http://dx.doi.org/10.1016/j.ssci.2009.04.004.
  25. Chini, N., Stansby, P., Leake, J., Wolf, J., Roberts-Jones, J., Lowe, J., 2010. The impact of sea level rise and climate change on inshore wave climate: a case study for East Anglia (UK). Coast. Eng. 57, 973-984. http://dx.doi.org/10.1016/j.coastaleng.2010.05.009.
  26. Cihan, K., Yuksel, Y., 2011. Deformation of rubble-mound breakwaters under cyclic loads. Coast. Eng. 58, 528-539. http://dx.doi.org/10.1016/j.coastaleng.2011.02.002.
  27. Cihan, K., Yuksel, Y., Berilgen, M., Cevik, E.O., 2012. Behavior of homogenous rubble mound breakwaters materials under cyclic loads. Soil Dyn. Earthq. Eng. 34, 1-10. http://dx.doi.org/10.1016/j.soildyn.2011.10.009.
  28. Cooper, J.A.G., McKenna, J., 2008. Social justice in coastal erosion management: the temporal and spatial dimensions. Geoforum 39, 294-306. http://dx.doi.org/10.1016/j.geoforum.2007.06.007.
  29. Creel, L., 2003. Ripple Effects: Population and Coastal Regions. Population Reference Bureau.
  30. Dean, R.G., Chen, R., Browder, A.E., 1997. Full scale monitoring study of a submerged breakwater, Palm Beach, Florida, USA. Coast. Eng. 29, 291-315. https://doi.org/10.1016/S0378-3839(96)00028-2
  31. De Girolamo, P., 1996. An experiment on harbour resonance induced by incident regular waves and irregular short waves. Coast. Eng. 27, 47-66. https://doi.org/10.1016/0378-3839(95)00039-9
  32. De Graauw, A., 1986. Wave statistics based on ship's observations. Coast. Eng. 10, 105-118. https://doi.org/10.1016/0378-3839(86)90011-6
  33. de Haan, W., 1991. Deterministic computer-aided optimum design of rock rubble-mound breakwater cross-sections. Coast. Eng. 15, 3-19. https://doi.org/10.1016/0378-3839(91)90039-J
  34. Diab, H., Lafon, P., Younes, R., 2014. Optimisation of breakwaters design to protect offshore terminal area. In: Presented at the the 5th IASTED International Conference on Modelling, Simulation and Identification-2014, Banff, Canada. http://dx.doi.org/10.2316/P.2014.820-023.
  35. Dong, G., Gao, J., Ma, X., Wang, G., Ma, Y., 2013. Numerical study of low-frequency waves during harbor resonance. Ocean. Eng. 68, 38-46. http://dx.doi.org/10.1016/j.oceaneng.2013.04.020.
  36. Du, Y., Pan, S., Chen, Y., 2010. Modelling the effect of wave overtopping on nearshore hydrodynamics and morphodynamics around shore-parallel breakwaters. Coast. Eng. 57, 812-826. http://dx.doi.org/10.1016/j.coastaleng.2010.04.005.
  37. Elchahal, G., Lafon, P., Younes, R., 2009a. Design optimization of floating breakwaters with an interdisciplinary fluid-solid structural problem. Can. J. Civ. Eng. 36, 1732-1743. http://dx.doi.org/10.1139/L09-095.
  38. Elchahal, G., Lafon, P., Younes, R., 2008a. Comparing various methods for topology and shape optimization of floating breakwaters. WSEAS Trans. Fluid Mech. 3, 186-199.
  39. Elchahal, G., Younes, R., Lafon, P., 2013. Optimization of coastal structures: application on detached breakwaters in ports. Ocean. Eng. 63, 35-43. http://dx.doi.org/10.1016/j.oceaneng.2013.01.021.
  40. Elchahal, G., Younes, R., Lafon, P., 2009b. Parametrical and motion analysis of a moored rectangular floating breakwater. J. Offshore Mech. Arct. Eng. 131, 1-11. http://dx.doi.org/10.1115/1.3124125.
  41. Elchahal, G., Younes, R., Lafon, P., 2008b. The effects of reflection coefficient of the harbour sidewall on the performance of floating breakwaters. Ocean. Eng. 35, 1102-1112. http://dx.doi.org/10.1016/j.oceaneng.2008.04.015.
  42. Elchahal, G., Younes, R., Lafon, P., 2006. Shape and material optimization of a 2D vertical floating breakwater. WSEAS Trans. Fluid Mech. 1, 355-362.
  43. Elsharnouby, B., Soliman, A., Elnaggar, M., Elshahat, M., 2012. Study of environment friendly porous suspended breakwater for the Egyptian Northwestern Coast. Ocean. Eng. 48, 47-58. http://dx.doi.org/10.1016/j.oceaneng.2012.03.012.
  44. Filianoti, P., 2000. Diffraction of random wind-generated waves by detached breakwater or breakwater gap. Ocean. Eng. 27, 1249-1263. http://dx.doi.org/10.1016/S0029-8018(99)00044-X.
  45. Franco, L., 1994. Vertical breakwaters: the Italian experience. Coast. Eng. 22, 31-55. https://doi.org/10.1016/0378-3839(94)90047-7
  46. Franco, L., Lamberti, A., Noli, A., Tomasicchio, U., 1986. Evaluation of risk applied to the designed breakwater of Punta Riso at Brindisi, Italy. Coast. Eng. 10, 169-191. https://doi.org/10.1016/0378-3839(86)90016-5
  47. Galor, W., 2007. The effect of ship's impact on sea bed in shallow water. Arch. Civ. Mech. Eng. 7, 105-114. https://doi.org/10.1016/S1644-9665(12)60017-X
  48. Gesraha, M.R., 2006. Analysis of shaped floating breakwater in oblique waves: I. Impervious rigid wave boards. Appl. Ocean Res. 28, 327-338. http://dx.doi.org/10.1016/j.apor.2007.01.002.
  49. Gunaydin, K., Kabdasli, M., 2004. Performance of solid and perforated U-type breakwaters under regular and irregular waves. Ocean. Eng. 31, 1377-1405. http://dx.doi.org/10.1016/j.oceaneng.2004.02.002.
  50. Gunaydin, K., Kabdasli, M.S., 2007. Investigation of P-type breakwaters performance under regular and irregular waves. Ocean. Eng. 34, 1028-1043. http://dx.doi.org/10.1016/j.oceaneng.2006.03.015.
  51. Hardaway, C.S., Gunn, J.R., 2010. Design and performance of headland bays in Chesapeake Bay, USA. Coast. Eng. 57, 203-212. http://dx.doi.org/10.1016/j.coastaleng.2009.10.007.
  52. Hattori, M., Arami, A., Yui, T., 1994. Wave impact pressure on vertical walls under breaking waves of various types. Coast. Eng. 22, 79-114. https://doi.org/10.1016/0378-3839(94)90049-3
  53. Hong, K.-S., Ngo, Q.H., 2012. Dynamics of the container crane on a mobile harbor. Ocean. Eng. 53, 16-24. http://dx.doi.org/10.1016/j.oceaneng.2012.06.013.
  54. Hornby, A.S., Cowie, A.P., Hornby, A.S., 1989. Oxford advanced Learner's Dictionary of Current English. Oxford University Press, Oxford.
  55. Hsu, W.-K.K., 2012. Ports' service attributes for ship navigation safety. Saf. Sci. 50, 244-252. http://dx.doi.org/10.1016/j.ssci.2011.08.057.
  56. Hughes, S.A., Schwichtenberg, B.R., 1998. Current-induced scour along a breakwater at Ventura harbor, CA-experimental study. Coast. Eng. 34, 1-22. https://doi.org/10.1016/S0378-3839(98)00010-6
  57. Hu, J., Yu, Y., Zhu, L., 2006. Research on wave forces acting on the unit length of a vertical breakwater by tests and a numerical model. J. Hydrodyn. Ser. B 18, 512-519. https://doi.org/10.1016/S1001-6058(06)60128-5
  58. Hur, D.-S., Kim, C.-H., Yoon, J.-S., 2010. Numerical study on the interaction among a nonlinear wave, composite breakwater and sandy seabed. Coast. Eng. 57, 917-930. http://dx.doi.org/10.1016/j.coastaleng.2010.05.010.
  59. Isebe, D., Azerad, P., Mohammadi, B., Bouchette, F., 2008. Optimal shape design of defense structures for minimizing short wave impact. Coast. Eng. 55, 35-46. http://dx.doi.org/10.1016/j.coastaleng.2007.06.006.
  60. Isobe, M., 2013. Impact of global warming on coastal structures in shallow water. Ocean. Eng. 71, 51-57. http://dx.doi.org/10.1016/j.oceaneng.2012.12.032.
  61. Jordi, A., Basterretxea, G., Casas, B., Angles, S., Garces, E., 2008. Seiche-forced resuspension events in a Mediterranean harbour. Cont. Shelf Res. 28, 505-515. http://dx.doi.org/10.1016/j.csr.2007.10.009.
  62. Juul Jensen, O., Sorensen, T., 1979. Overspilling/overtopping of rubble-mound breakwaters. Results of studies, useful in design procedures. Coast. Eng. 3, 51-65. http://dx.doi.org/10.1016/0378-3839(79)90005-X.
  63. Kamphuis, J.W., 2006. Coastal engineering-quo vadis? Coast. Eng. 53, 133-140. http://dx.doi.org/10.1016/j.coastaleng.2005.10.003.
  64. Kantardgi, I., Mairanovsky, F., Sapova, N., 1995. Water exchange and water quality in the coastal zone in the presence of structures. Coast. Eng. 26, 207-223. https://doi.org/10.1016/0378-3839(95)00023-2
  65. Kim, H., Do, K.D., Suh, K.-D., 2011. Scattering of obliquely incident water waves by partially reflecting non-transmitting breakwaters. Ocean. Eng. 38, 148-158. http://dx.doi.org/10.1016/j.oceaneng.2010.10.001.
  66. Kirca, V.S.O., Kabdasli, M.S., 2009. Reduction of non-breaking wave loads on caisson type breakwaters using a modified perforated configuration. Ocean. Eng. 36, 1316-1331. http://dx.doi.org/10.1016/j.oceaneng.2009.09.003.
  67. Kirkgoz, M.S., 1992. Influence of water depth on the breaking wave impact on vertical and sloping walls. Coast. Eng. 18, 297-314. https://doi.org/10.1016/0378-3839(92)90025-P
  68. Latham, J.-P., Van Meulen, J., Dupray, S., 2006. Prediction of in-situ block size distributions with reference to armourstone for breakwaters. Eng. Geol. 86, 18-36. http://dx.doi.org/10.1016/j.enggeo.2006.04.001.
  69. Lebey, M., Rivoalen, E., 2002. Experimental study of the working principal and efficiency of a superposed inclined planes wave absorber. Ocean. Eng. 29, 1427-1440. https://doi.org/10.1016/S0029-8018(01)00089-0
  70. Lee, H.S., Kim, S.D., Wang, K.-H., Eom, S., 2009. Boundary element modeling of multidirectional random waves in a harbor with a rectangular navigation channel. Ocean. Eng. 36, 1287-1294. http://dx.doi.org/10.1016/j.oceaneng.2009.09.009.
  71. Ling, H.I., 2001. Recent applications of sliding block theory to geotechnical design. Soil Dyn. Earthq. Eng. 21, 189-197. http://dx.doi.org/10.1016/S0267-7261(01)00007-0.
  72. Liu, Y., Li, Y., 2011. Wave interaction with a wave absorbing double curtain-wall breakwater. Ocean. Eng. 38, 1237-1245. http://dx.doi.org/10.1016/j.oceaneng.2011.05.009.
  73. Martinelli, L., Ruol, P., Zanuttigh, B., 2008. Wave basin experiments on floating breakwaters with different layouts. Appl. Ocean Res. 30, 199-207. http://dx.doi.org/10.1016/j.apor.2008.09.002.
  74. Massel, S.R., 1993. Extended refraction-diffraction equation for surface waves. Coast. Eng. 19, 97-126. https://doi.org/10.1016/0378-3839(93)90020-9
  75. McCabe, M.V., Stansby, P.K., Apsley, D.D., 2013. Random wave runup and overtopping a steep sea wall: shallow-water and Boussinesq modelling with generalised breaking and wall impact algorithms validated against laboratory and field measurements. Coast. Eng. 74, 33-49. http://dx.doi.org/10.1016/j.coastaleng.2012.11.010.
  76. Michailides, C., Angelides, D.C., 2012. Modeling of energy extraction and behavior of a flexible floating breakwater. Appl. Ocean Res. 35, 77-94. http://dx.doi.org/10.1016/j.apor.2011.11.004.
  77. Morgan Young, D., Testik, F.Y., 2011. Wave reflection by submerged vertical and semicircular breakwaters. Ocean. Eng. 38, 1269-1276. http://dx.doi.org/10.1016/j.oceaneng.2011.05.003.
  78. Neelamani, S., Rajendran, R., 2002a. Wave interaction with "ㅗ"-type breakwaters. Ocean. Eng. 29, 561-589. https://doi.org/10.1016/S0029-8018(01)00030-0
  79. Neelamani, S., Rajendran, R., 2002b. Wave interaction with T-type breakwaters. Ocean. Eng. 29, 151-175. https://doi.org/10.1016/S0029-8018(00)00060-3
  80. Ohtsu, K., Shoji, K., Okazaki, T., 1996. Minimum-time maneuvering of a ship, with wind disturbances. Control Eng. Pract. 4, 385-392. https://doi.org/10.1016/0967-0661(96)00016-0
  81. Ondiviela, B., Gomez, A.G., Puente, A., Juanes, J.A., 2013. A pragmatic approach to define the ecological potential of water bodies heavily modified by the presence of ports. Environ. Sci. Policy 33, 320-331. http://dx.doi.org/10.1016/j.envsci.2013.07.001.
  82. Oumeraci, H., 1994. Review and analysis of vertical breakwater failures-lessons learned. Coast. Eng. 22, 3-29. https://doi.org/10.1016/0378-3839(94)90046-9
  83. Patil, S.G., Mandal, S., Hegde, A.V., 2012. Genetic algorithm based support vector machine regression in predicting wave transmission of horizontally interlaced multi-layer moored floating pipe breakwater. Adv. Eng. Softw. 45, 203-212. http://dx.doi.org/10.1016/j.advengsoft.2011.09.026.
  84. Pena, E., Ferreras, J., Sanchez-Tembleque, F., 2011. Experimental study on wave transmission coefficient, mooring lines and module connector forces with different designs of floating breakwaters. Ocean. Eng. 38, 1150-1160. http://dx.doi.org/10.1016/j.oceaneng.2011.05.005.
  85. Piccoli, C., 2014. Economic Optimization of Breakwaters-Case Study: Maintenance of Port of Constantza's Northern Breakwater. TU Delft, Delft University of Technology.
  86. Pierson, W.J., Neumann, G., James, R.W., 1955. Practical Methods for Observing and Forecasting Ocean Waves by Means of Wave Spectra and Statistics. Pub. No. 603. US Navy Hydrographic Office.
  87. Puertos del Estado (Espana), 2007. ROM 3.1-99: Recommendations for the Design of the Maritime Configuration of Ports, Approach Channels and Harbour Basins. Puertos del Estado, Madrid.
  88. Putnam, J.A., Johson, J.W., 1949. The dissipation of wave energy by bottom friction. Trans. Am. Geophys. Union 30, 67. http://dx.doi.org/10.1029/TR030i001p00067.
  89. Rakha, K.A., Kamphuis, J.W., 1997. Wave-induced currents in the vicinity of a seawall. Coast. Eng. 30, 23-52. https://doi.org/10.1016/S0378-3839(96)00035-X
  90. Rusu, E., Guedes Soares, C., 2011. Wave modelling at the entrance of ports. Ocean. Eng. 38, 2089-2109. http://dx.doi.org/10.1016/j.oceaneng.2011.09.002.
  91. Sasa, K., Incecik, A., 2012. Numerical simulation of anchored ship motions due to wave and wind forces for enhanced safety in offshore harbor refuge. Ocean. Eng. 44, 68-78. http://dx.doi.org/10.1016/j.oceaneng.2011.11.006.
  92. Schelfn, T.E., Ostergaard, C., 1995. The vessel in port: mooring problems. Mar. Struct. 8, 451-479. https://doi.org/10.1016/0951-8339(95)97304-Q
  93. Schuttrumpf, H., Oumeraci, H., 2005. Layer thicknesses and velocities of wave overtopping flow at seadikes. Coast. Eng. 52, 473-495. http://dx.doi.org/10.1016/j.coastaleng.2005.02.002.
  94. Seo, M.-G., Kim, Y., 2011. Numerical analysis on ship maneuvering coupled with ship motion in waves. Ocean. Eng. 38, 1934-1945. http://dx.doi.org/10.1016/j.oceaneng.2011.09.023.
  95. Shankar, N.J., Jayaratne, M.P.R., 2003. Wave run-up and overtopping on smooth and rough slopes of coastal structures. Ocean. Eng. 30, 221-238. https://doi.org/10.1016/S0029-8018(02)00016-1
  96. Silvester, R., 1978. What direction coastal engineering? Coast. Eng. 2, 327-349. https://doi.org/10.1016/0378-3839(78)90030-3
  97. Spataru, A.N., 1990. Breakwaters for the protection of Romanian beaches. Coast. Eng. 14, 129-146. https://doi.org/10.1016/0378-3839(90)90014-N
  98. Stokes, G.G., 1847. On the theory of oscillatory waves. Trans. Camb. Philos. Soc. 8, 441-455.
  99. Suh, K.-D., Kim, S.-W., Kim, S., Cheon, S., 2013. Effects of climate change on stability of caisson breakwaters in different water depths. Ocean. Eng. 71, 103-112. http://dx.doi.org/10.1016/j.oceaneng.2013.02.017.
  100. Tanimoto, K., Takahashi, S., 1994. Design and construction of caisson breakwaters-the Japanese experience. Coast. Eng. 22, 57-77. https://doi.org/10.1016/0378-3839(94)90048-5
  101. Teisson, C., 1990. Statistical approach of duration of extreme storms: consequences on breakwater damages. In: Presented at the Coastal Engineering, ASCE, pp. 1851-1860.
  102. Tomasicchio, G.R., D'Alessandro, F., Barbaro, G., Malara, G., 2013. General longshore transport model. Coast. Eng. 71, 28-36. http://dx.doi.org/10.1016/j.coastaleng.2012.07.004.
  103. van der Meer, J.W., Verhaeghe, H., Steendam, G.J., 2009. The new wave overtopping database for coastal structures. Coast. Eng. 56, 108-120. http://dx.doi.org/10.1016/j.coastaleng.2008.03.012.
  104. Vidal, C., Medina, R., Lomonaco, P., 2006. Wave height parameter for damage description of rubble-mound breakwaters. Coast. Eng. 53, 711-722. http://dx.doi.org/10.1016/j.coastaleng.2006.02.007.
  105. Weng, W., Kuo, Y., Chou, C.-R., 1996. Analysis of forces due to irregular waves exerted on a ship near a harbor entrance. Mar. Struct. 9, 609-629. https://doi.org/10.1016/0951-8339(94)00030-1
  106. World Resources Institute, United Nations Environment Programme, United Nations Development Programme, 1992. World Resources 1992-93: a Report. Oxford University Press, New York.
  107. Xie, M., Zhang, W., 2010. Numerical study on the three-dimensional characteristics of the tidal current around harbor entrance. J. Hydrodyn. Ser. B 22, 847-855. http://dx.doi.org/10.1016/S1001-6058(09)60125-6.
  108. Yang, C., Lu, H., Lohner, R., 2010. On the simulation of highly nonlinear wave-breakwater interactions. J. Hydrodyn. Ser. B 22, 975-981. http://dx.doi.org/10.1016/S1001-6058(10)60061-3.
  109. Yavin, Y., Frangos, C., Zilman, G., Miloh, T., 1995. Computation of feasible command strategies for the navigation of a ship in a narrow zigzag channel. Comput. Math. Appl. 30, 79-101.
  110. Yeganeh-Bakhtiary, A., Hajivalie, F., Hashemi-Javan, A., 2010. Steady streaming and flow turbulence in front of vertical breakwater with wave overtopping. Appl. Ocean Res. 32, 91-102. http://dx.doi.org/10.1016/j.apor.2010.03.002.
  111. Yu, Y.-X., Liu, S.-X., Li, Y.S., Wai, O.W., 2000. Refraction and diffraction of random waves through breakwater. Ocean. Eng. 27, 489-509. https://doi.org/10.1016/S0029-8018(99)00005-0
  112. Zuo, S.-H., Zhang, N.-C., Li, B., Zhang, Z., Zhu, Z.-X., 2009. Numerical simulation of tidal current and erosion and sedimentation in the Yangshan deep-water harbor of Shanghai. Int. J. Sediment Res. 24, 287-298. https://doi.org/10.1016/S1001-6279(10)60004-2
  113. Zuo, S., Li, B., 2010. Study on hydrodynamic and sedimentation problems in development of harbors located at offshore area with many islands and tidal channels. J. Hydrodyn. Ser. B 22, 587-592. http://dx.doi.org/10.1016/S1001-6058(09)60257-2.
  114. Zyserman, J.A., Johnson, H.K., Zanuttigh, B., Martinelli, L., 2005. Analysis of far-field erosion induced by low-crested rubble-mound structures. Coast. Eng. 52, 977-994. http://dx.doi.org/10.1016/j.coastaleng.2005.09.013.

Cited by

  1. Identifying Ecosystem-Based Alternatives for the Design of a Seaport’s Marine Infrastructure: The Case of Tema Port Expansion in Ghana vol.11, pp.23, 2017, https://doi.org/10.3390/su11236633
  2. Optimization of fairway design parameters: Systematic approach to manoeuvring safety vol.12, pp.None, 2017, https://doi.org/10.1016/j.ijnaoe.2019.08.002
  3. Determination of the Waterway Parameters as a Component of Safety Management System vol.11, pp.10, 2017, https://doi.org/10.3390/app11104456
  4. Sea State Estimation from Uncalibrated, Monoscopic Video vol.2, pp.4, 2021, https://doi.org/10.1007/s42979-021-00727-0