참고문헌
- Bonet, J., Lok, T.S., 1999. Variational and momentum preservation aspects of smooth particle hydrodynamics formulation. Comput. Methods Appl. Mech. Eng. 180, 97-115. https://doi.org/10.1016/S0045-7825(99)00051-1
- Colagrossi, A., Landrini, M., 2003. Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J. Comput. Phys. 191, 448-475. https://doi.org/10.1016/S0021-9991(03)00324-3
- Cummins, S.J., Rudman, M., 1999. An SPH projection method. J. Comput. Phys. 152, 584-607. https://doi.org/10.1006/jcph.1999.6246
- Ellero, M., Serrano, M., Espanol, P., 2007. Incompressible smoothed particle hydrodynamics. J. Comput. Phys. 226, 1731-1752. https://doi.org/10.1016/j.jcp.2007.06.019
- Ferrand, M., Laurence, D.R., Rogers, B.D., Violeau, D., Kassiotis, C., 2013. Unified semi-analytical wall boundary conditions for inviscid, laminar or turbulent flows in the meshless SPH method. Int. J. Numer. Meth. Fluids 71, 446-472. https://doi.org/10.1002/fld.3666
- Fujino, S., 2002. GPBICG (m, l): a hybrid of BiCGSTAB and GPBiCG methods with efficiency and robustness. Appl. Numer. Math. 41, 107-117. https://doi.org/10.1016/S0168-9274(01)00113-1
- Hori, C., Gotoh, H., Ikari, H., Khayyer, A., 2011. GPU-acceleration for moving particle semi-implicit method. Comput. Fluids 51, 174-183. https://doi.org/10.1016/j.compfluid.2011.08.004
- Hu, X.Y., Adams, N.A., 2007. An incompressible multi-phase SPH method. J. Comput. Phys. 227 (2), 264-278. https://doi.org/10.1016/j.jcp.2007.07.013
- Khayyer, A., Gotoh, H., 2011. Enhancement of stability and accuracy of the moving particle semi-implicit method. J. Comput. Phys. 230, 3093-3118. https://doi.org/10.1016/j.jcp.2011.01.009
- Khayyer, A.,Gotoh,H., Shao, S.D., 2008. Corrected incompressible SPHmethod for accurate water-surface tracking in breaking waves. Coast. Eng. 55 (3), 26-50.
- Kishev, Z.R., Hu, C.H., Kashiwagi, M., 2006. Numerical simulation of violent sloshing by a CIP-based method. J. Mar. Sci. Technol. 11, 111-122. https://doi.org/10.1007/s00773-006-0216-7
- Koshizuka, S., Oka, Y., 1996. Moving particle semi-implicit method for fragmentation of incompressible fluid. Nucl. Sci. Eng. 123 (3), 421-434. https://doi.org/10.13182/NSE96-A24205
- Koshizuka, S., Ikeda, H., Oka, Y., 1999. Numerical analysis of fragmentation mechanisms in vapour explosions. Nucl. Eng. Des. 189 (1-3), 423-433. https://doi.org/10.1016/S0029-5493(98)00270-2
- Lee, E.S., Moulinec, C., Xu, R., Violeau, D., Laurence, D., Stansby, P., 2008. Comparisons of weakly compressible and truly incompressible algorithms for the SPH mesh free particle method. J. Comput. Phys. 227, 8417-8436. https://doi.org/10.1016/j.jcp.2008.06.005
- Liu, X., Xu, H.H., Shao, S.D., Lin, P.Z., 2013. An improved incompressible SPH model for simulation of wave - structure interaction. Comput. Fluids 71, 113-123. https://doi.org/10.1016/j.compfluid.2012.09.024
- Lind, S.J., Xu, R., Stansby, P.K., Rogers, B.D., 2012. Incompressible smoothed particle hydrodynamics for free-surface flows: a generalised diffusion-based algorithm for stability and validations for impulsive flows and propagating waves. J. Comput. Phys. 231, 1499-1523. https://doi.org/10.1016/j.jcp.2011.10.027
- Liu, M.B., Liu, G.R., 2006. Restoring particle consistency in smoothed particle hydrodynamics. Appl. Numer. Math. 56, 19-36. https://doi.org/10.1016/j.apnum.2005.02.012
- Ma, Q.W., Zhou, J., 2009. MLPG_R method for numerical simulation of 2D breaking waves. Comput. Model. Eng. Sci. 43 (3), 277-304.
- Martin, J.C., Moyce,W.J., 1952. Part IV: an experimental study of the collapse of liquid columns on a rigid horizontal plane. Phil. Trans. R. Soc. Lond. A 244 (882), 312-324. https://doi.org/10.1098/rsta.1952.0006
- Mittal, R.C., Alaurdi, A.H., 2003. An efficient method for constructing an ILU preconditioner for solving large sparse nonsymmetric linear systems by the GMRES method. Comput. Math. Appl. 45, 1757-1772. https://doi.org/10.1016/S0898-1221(03)00154-8
- Monaghan, J.J., 1994. Simulation free surface flows with SPH. J. Compu. Phys. 110 (4), 399-406. https://doi.org/10.1006/jcph.1994.1034
- Oger, G., Doring, M., Alessandrini, B., Ferrant, P., 2007. An improved SPH method: towards higher order convergence. J. Comput. Phys. 225, 1472-1492. https://doi.org/10.1016/j.jcp.2007.01.039
- Rafiee, A.R., Cummins, S., Rudman, M., Thiagarajan, K., 2012. Comparative study on the accuracy and stability of SPH schemes in simulating energetic free-surface flows. Eur. J. Mech. B/Fluids 36, 1-16. https://doi.org/10.1016/j.euromechflu.2012.05.001
- Saad, Y., 2003. Iterative Methods for Sparse Linear Systems (Second Version). Society for Industrial and Applied Mathematic.
- Saad, Y., Schultz, M.H., 1986. GMRES: a generalized minimum residual algorithm for solving nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856-869. https://doi.org/10.1137/0907058
- Schwaiger, H.F., 2008. An implicit corrected SPH formulation for thermal diffusion with linear free surface boundary conditions. Int. J. Numer. Meth. Engng. 75, 647-671. https://doi.org/10.1002/nme.2266
- Shadloo, M.S., Zainali, A., Yildiz, M., Suleman, A., 2012. A robust weakly compressible SPH method and its comparison with an incompressible SPH. Int. J. Numer. Methods Eng. 89 (8), 939-956. https://doi.org/10.1002/nme.3267
- Shao, S.D., 2009. Incompressible SPH simulation of water entry of a free-falling object. Int. J. Numer. Meth. Fluids 59 (1), 91-115. https://doi.org/10.1002/fld.1813
- Shao, S.D., Lo Edmond, Y.M., 2003. Incompressible SPH method for simulating Newtonian and non-Newtonian flows with a free surface. Adv. Water Resour. 26 (7), 787-800. https://doi.org/10.1016/S0309-1708(03)00030-7
- Shao, S.D., Ji, C.M., Graham, D.I., Reeve, D.E., James, P.W., Chadwick, A.J., 2006. Simulation of wave overtopping by an incompressible SPH model. Coast. Eng. 53 (9), 723-735. https://doi.org/10.1016/j.coastaleng.2006.02.005
- Sleijpen, G.L., Fokkema, D.R., 1993. BiCGstab(L) for linear equations involving unsymmetric matrices with complex spectrum. Electron. Trans. Numer. Analysis 1, 11-32.
- Sonneveld, P., 1989. CGS, A fast Lanczos-type solver for nonsymetric linear systems. SIAM J. Sci. Stat. Comput. 10, 36-52. https://doi.org/10.1137/0910004
- Sonneveld, P., Van Gijzen, M.B., 2009. IDR(s): a family of simple and fast algorithms for solving large nonsymmetric systems of linear equations. SIAM J. Sci. Comput. 31 (2), 1035-1062. https://doi.org/10.1137/070685804
- Spyropoulos, A.N., Palyvos, J.A., Boudouvis, A.G., 2004. Bifurcation detection with the (un) preconditioned GMRES(m). Comput. Methods Appl. Mech. Eng. 193, 4707-4716. https://doi.org/10.1016/j.cma.2004.04.002
- Vogel, J.A., 2007. Flexible BiCG and flexible Bi-CGSTAB for nonsymmetric linear systems. Appl. Math. Comput. 188, 226-233.
- Van der Vorst, H.A., 1992. Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for solution of non-symmetric linear system. SIAM J. Sci. Stat. Comput. 13, 631-644. https://doi.org/10.1137/0913035
- Xu, R., Stansby, P., Laurence, D., 2009. Accuracy and stability in incompressible SPH (ISPH) based on the projection method and a new approach. J. Comput. Phys. 228 (18), 6703-6725. https://doi.org/10.1016/j.jcp.2009.05.032
- Zhang, S., Morita, K., Kenji, F., Shirakawa, N., 2006. An improved mps method for numerical simulations of convective heat transfer problems. Int. J. Numer. Methods Fluids 51, 31-47. https://doi.org/10.1002/fld.1106
- Zheng, X., Ma, Q.W., Duan, W.Y., 2014. Incompressible SPH method based on Rankine source solution for violent water wave simulation. J. Comput. Phys. 276, 291-314. https://doi.org/10.1016/j.jcp.2014.07.036
- Zheng, X., Hu, Z.H., Ma, Q.W., Duan, W.Y., 2015. Incompressible SPH based on Rankine source solution for water wave impact simulation. Procedia Eng. 126, 650-654. https://doi.org/10.1016/j.proeng.2015.11.255