• 제목/요약/키워드: Solitary wave slamming

검색결과 2건 처리시간 0.014초

Numerical investigation of solitary wave interaction with a row of vertical slotted piles on a sloping beach

  • Jiang, Changbo;Liu, Xiaojian;Yao, Yu;Deng, Bin
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권1호
    • /
    • pp.530-541
    • /
    • 2019
  • To improve our current understanding of tsunami-like solitary waves interacting with a row of vertical slotted piles on a sloping beach, a 3D numerical wave tank based on the CFD tool $OpenFOAM^{(R)}$ was developed in this study. The Navier-Stokes equations were employed to solve the two-phase incompressible flow, combining with an improved VOF method to track the free surface and a LES model to resolve the turbulence. The numerical model was firstly validated by our laboratory measurements of wave, flow and dynamic pressure around both a row of piles and a single pile on a slope subjected to solitary waves. Subsequently, a series of numerical experiments were conducted to analyze the breaking wave force in view of varying incident wave heights, offshore water depths, spaces between adjacent piles and beach slopes. Finally, a slamming coefficient was discussed to account for the breaking wave force impacting on the piles.

Comparison of different iterative schemes for ISPH based on Rankine source solution

  • Zheng, Xing;Ma, Qing-wei;Duan, Wen-yang
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권4호
    • /
    • pp.390-403
    • /
    • 2017
  • Smoothed Particle Hydrodynamics (SPH) method has a good adaptability for the simulation of free surface flow problems. There are two forms of SPH. One is weak compressible SPH and the other one is incompressible SPH (ISPH). Compared with the former one, ISPH method performs better in many cases. ISPH based on Rankine source solution can perform better than traditional ISPH, as it can use larger stepping length by avoiding the second order derivative in pressure Poisson equation. However, ISPH_R method needs to solve the sparse linear matrix for pressure Poisson equation, which is one of the most expensive parts during one time stepping calculation. Iterative methods are normally used for solving Poisson equation with large particle numbers. However, there are many iterative methods available and the question for using which one is still open. In this paper, three iterative methods, CGS, Bi-CGstab and GMRES are compared, which are suitable and typical for large unsymmetrical sparse matrix solutions. According to the numerical tests on different cases, still water test, dam breaking, violent tank sloshing, solitary wave slamming, the GMRES method is more efficient than CGS and Bi-CGstab for ISPH method.