DOI QR코드

DOI QR Code

Agrobacterium-Mediated Co-transformation of Multiple Genes in Metarhizium robertsii

  • Padilla-Guerrero, Israel Enrique (Division of Natural and Exact Sciences, Department of Biology, University of Guanajuato, Campus Guanajuato) ;
  • Bidochka, Michael J. (Department of Biological Sciences, Brock University)
  • Received : 2017.05.10
  • Accepted : 2017.06.11
  • Published : 2017.06.30

Abstract

Fungi of the Metarhizium genus are a very versatile model for understanding pathogenicity in insects and their symbiotic relationship with plants. To establish a co-transformation system for the transformation of multiple M. robertsii genes using Agrobacterium tumefaciens, we evaluated whether the antibiotic nourseothricin has the same marker selection efficiency as phosphinothricin using separate vectors. Subsequently, in the two vectors containing the nourseothricin and phosphinothricin resistance cassettes were inserted eGFP and mCherry expression cassettes, respectively. These new vectors were then introduced independently into A. tumefaciens and used to transform M. robertsii either in independent events or in one single co-transformation event using an equimolar mixture of A. tumefaciens cultures. The number of transformants obtained by co-transformation was similar to that obtained by the individual transformation events. This method provides an additional strategy for the simultaneous insertion of multiple genes into M. robertsii.

Keywords

References

  1. Roberts DW, St Leger RJ. Metarhizium spp., cosmopolitan insect-pathogenic fungi: mycological aspects. Adv Appl Microbiol 2004;54:1-70.
  2. Fang W, Vega-Rodriguez J, Ghosh AK, Jacobs-Lorena M, Kang A, St Leger RJ. Development of transgenic fungi that kill human malaria parasites in mosquitoes. Science 2011;331: 1074-7. https://doi.org/10.1126/science.1199115
  3. Health Canada's Consumer Product Safety. Proposed Registration Decision for Metarhizium anisopliae strain F52 [Internet]. Hamilton (ON): Health Canada's Consumer Product Safety; 2011 [cited 2011 Oct 27]. Available from: http://www.hc-sc.gc.ca/cps-spc/pest/part/consultations/_prd2011-13/ prd2011-13-eng.php#a1.
  4. Wang S, Leclerque A, Pava-Ripoll M, Fang W, St Leger RJ. Comparative genomics using microarrays reveals divergence and loss of virulence-associated genes in host-specific strains of the insect pathogen Metarhizium anisopliae. Eukaryot Cell 2009;8:888-98. https://doi.org/10.1128/EC.00058-09
  5. Wang S, Fang W, Wang C, St Leger RJ. Insertion of an esterase gene into a specific locust pathogen (Metarhizium acridum) enables it to infect caterpillars. PLoS Pathog 2011;7: e1002097. https://doi.org/10.1371/journal.ppat.1002097
  6. Lomer CJ, Bateman RP, Johnson DL, Langewald J, Thomas M. Biological control of locusts and grasshoppers. Annu Rev Entomol 2001;46:667-702. https://doi.org/10.1146/annurev.ento.46.1.667
  7. St Leger RJ, Wang C. Genetic engineering of fungal biocontrol agents to achieve greater efficacy against insect pests. Appl Microbiol Biotechnol 2010;85:901-7. https://doi.org/10.1007/s00253-009-2306-z
  8. Sasan RK, Bidochka MJ. The insect-pathogenic fungus Metarhizium robertsii (Clavicipitaceae) is also an endophyte that stimulates plant root development. Am J Bot 2012;99: 101-7. https://doi.org/10.3732/ajb.1100136
  9. Khan AL, Hamayun M, Khan SA, Kang SM, Shinwari ZK, Kamran M, Ur Rehman S, Kim JG, Lee IJ. Pure culture of Metarhizium anisopliae LHL07 reprograms soybean to higher growth and mitigates salt stress. World J Microbiol Biotechnol 2012;28:1483-94. https://doi.org/10.1007/s11274-011-0950-9
  10. Behie SW, Zelisko PM, Bidochka MJ. Endophytic insectparasitic fungi translocate nitrogen directly from insects to plants. Science 2012;336:1576-7. https://doi.org/10.1126/science.1222289
  11. Behie SW, Moreira CC, Sementchoukova I, Barelli L, Zelisko PM, Bidochka MJ. Carbon translocation from a plant to an insect-pathogenic endophytic fungus. Nat Commun 2017;8: 14245. https://doi.org/10.1038/ncomms14245
  12. Gao Q, Jin K, Ying SH, Zhang Y, Xiao G, Shang Y, Duan Z, Hu X, Xie XQ, Zhou G, et al. Genome sequencing and comparative transcriptomics of the model entomopathogenic fungi Metarhizium anisopliae and M. acridum. PLoS Genet 2011;7:e1001264. https://doi.org/10.1371/journal.pgen.1001264
  13. Hu X, Xiao G, Zheng P, Shang Y, Su Y, Zhang X, Liu X, Zhan S, St Leger RJ, Wang C. Trajectory and genomic determinants of fungal-pathogen speciation and host adaptation. Proc Natl Acad Sci U S A 2014;111:16796-801. https://doi.org/10.1073/pnas.1412662111
  14. Pattemore JA, Hane JK, Williams AH, Wilson BA, Stodart BJ, Ash GJ. The genome sequence of the biocontrol fungus Metarhizium anisopliae and comparative genomics of Metarhizium species. BMC Genomics 2014;15:660. https://doi.org/10.1186/1471-2164-15-660
  15. Staats CC, Junges A, Guedes RL, Thompson CE, de Morais GL, Boldo JT, de Almeida LG, Andreis FC, Gerber AL, Sbaraini N, et al. Comparative genome analysis of entomopathogenic fungi reveals a complex set of secreted proteins. BMC Genomics 2014;15:822. https://doi.org/10.1186/1471-2164-15-822
  16. Shang Y, Xiao G, Zheng P, Cen K, Zhan S, Wang C. Divergent and convergent evolution of fungal pathogenicity. Genome Biol Evol 2016;8:1374-87. https://doi.org/10.1093/gbe/evw082
  17. Bernier L, Cooper RM, Charnley AK, Clarkson JM. Transformation of the entomopathogenic fungus Metarhizium anisopliae to benomyl resistance. FEMS Microbiol Lett 1989; 60:261-5. https://doi.org/10.1111/j.1574-6968.1989.tb03483.x
  18. Fang W, Pei Y, Bidochka MJ. A regulator of a G protein signalling (RGS) gene, cag8, from the insect-pathogenic fungus Metarhizium anisopliae is involved in conidiation, virulence and hydrophobin synthesis. Microbiology 2007;153(Pt 4):1017-25. https://doi.org/10.1099/mic.0.2006/002105-0
  19. Sevim A, Donzelli BG, Wu D, Demirbag Z, Gibson DM, Turgeon BG. Hydrophobin genes of the entomopathogenic fungus, Metarhizium brunneum, are differentially expressed and corresponding mutants are decreased in virulence. Curr Genet 2012;58:79-92. https://doi.org/10.1007/s00294-012-0366-6
  20. Lin L, Wang F, Wei D. Chlorimuron ethyl as a new selectable marker for disrupting genes in the insect-pathogenic fungus Metarhizium robertsii. J Microbiol Methods 2011;87:241-3. https://doi.org/10.1016/j.mimet.2011.07.018
  21. Cook D, Donzelli BG, Creamer R, Baucom DL, Gardner DR, Pan J, Moore N, Krasnoff SB, Jaromczyk JW, Schardl CL. Swainsonine biosynthesis genes in diverse symbiotic and pathogenic fungi. G3 (Bethesda) 2017;7:1791-7.
  22. Xu C, Zhang X, Qian Y, Chen X, Liu R, Zeng G, Zhao H, Fang W. A high-throughput gene disruption methodology for the entomopathogenic fungus Metarhizium robertsii. PLoS One 2014;9:e107657. https://doi.org/10.1371/journal.pone.0107657
  23. Sambrook J, Russell DW. Molecular cloning: a laboratory manual. 3rd ed. Cold Spring Harbor (NY): Cold Spring Harbor Laboratory Press; 2001.
  24. Fang W, Pei Y, Bidochka MJ. Transformation of Metarhizium anisopliae mediated by Agrobacterium tumefaciens. Can J Microbiol 2006;52:623-6. https://doi.org/10.1139/w06-014
  25. Pall ML, Brunelli JP. A series of six compact fungal transformation vectors containing polylinkers with multiple unique restriction sites. Fungal Genet Rep 1993;40:59-62. https://doi.org/10.4148/1941-4765.1413
  26. Covert SF, Kapoor P, Lee MH, Briley A, Nairn CJ. Agrobacterium tumefaciens-mediated transformation of Fusarium circinatum. Mycol Res 2001;105:259-64. https://doi.org/10.1017/S0953756201003872
  27. Padilla-Guerrero IE, Barelli L, Gonzalez-Hernandez GA, Torres-Guzman JC, Bidochka MJ. Flexible metabolism in Metarhizium anisopliae and Beauveria bassiana: role of the glyoxylate cycle during insect pathogenesis. Microbiology 2011;157:199-208. https://doi.org/10.1099/mic.0.042697-0
  28. Paz Z, Garcia-Pedrajas MD, Andrews DL, Klosterman SJ, Baeza-Montanez L, Gold SE. One step construction of Agrobacterium-recombination-ready-plasmids (OSCAR), an efficient and robust tool for ATMT based gene deletion construction in fungi. Fungal Genet Biol 2011;48:677-84. https://doi.org/10.1016/j.fgb.2011.02.003
  29. Xu Y. Gene transfer and genetically modified plants. In: Xu Y, editor. Molecular plant breeding. Bodmin: MPG Books Group; 2010. p. 479-500.
  30. St. Leger RJ, Shimizu S, Joshi L, Bidochka MJ, Roberts DW. Co-transformation of Metarhizium anisopliae by electroporation or using the gene gun to produce stable GUS transformants. FEMS Microbiol Lett 1995;131:289-94. https://doi.org/10.1111/j.1574-6968.1995.tb07789.x
  31. Li FF, Wu SJ, Chen TZ, Zhang J, Wang HH, Guo WZ, Zhang TZ. Agrobacterium-mediated co-transformation of multiple genes in upland cotton. Plant Cell Tissue Organ Cult 2009;97: 225-35. https://doi.org/10.1007/s11240-009-9521-2
  32. McDade HC, Cox GM. A new dominant selectable marker for use in Cryptococcus neoformans. Med Mycol 2001;39:151-4. https://doi.org/10.1080/mmy.39.1.151.154