DOI QR코드

DOI QR Code

A Study on Optimization of Manufacture Conditions for Water Treatment Membrane by Using Electrospinning Method

전기방사법을 이용한 수처리용 막 제조 조건 최적화 연구

  • Lee, Sang Hyun (Department of Environmental Energy Engineering, Graduate school of Kyonggi University) ;
  • Choi, Sung Yeol (Department of Environmental Energy Engineering, Graduate school of Kyonggi University) ;
  • Chang, Soon Woong (Department of Environmental Energy Engineering, Kyonggi University) ;
  • Kim, Sung Su (Department of Environmental Energy Engineering, Kyonggi University)
  • 이상현 (경기대학교 일반대학원 환경에너지공학과) ;
  • 최성열 (경기대학교 일반대학원 환경에너지공학과) ;
  • 장순웅 (경기대학교 환경에너지공학과) ;
  • 김성수 (경기대학교 환경에너지공학과)
  • Received : 2017.01.03
  • Accepted : 2017.08.07
  • Published : 2017.08.31

Abstract

In this study, nano fibers with various physical properties were materialized by using a variety of polymers [PAN (Polyacrylonitrile), PU (Polyuretane), PSU (Polysulfone)] which are raw materials of dope solution manufactured for electrospinning and solvents [NMP (N-methyl-2 pyrrolidone), DMF (Dimethylformamide)] and evaluated characteristics of their flux and SS (Suspended Solids) separation and then ascertained application of manufactured fibers as separation membrane for water treatment. In this study, analysis of surface of manufactured material was carried out through SEM analysis to ascertain the cause of flux and SS separation performance by checking diameter, uniformity and straightness of fiber. If additive is used in manufacturing nano fiber water treatment separation membrane, it is expected to solve problems such as membrane fouling and mechanical strength and to be used as basic factor for manufacturing separation membrane with catalyst function added.

본 연구에서는 전기방사를 통해 제조되는 dope solution의 원료인 다양한 Polymer [PAN (Polyacrylonitrile), PU (Polyuretane), PSU (Polysulfone)]와 용매[NMP (N-methyl-2 pyrrolidone), DMF (Dimethylformamide)]를 이용하여 다양한 물성의 나노섬유 물질을 구현하고, 이의 flux 특성과 SS (Suspended Solids) 분리 성능을 평가하여 제조된 섬유의 수처리 분리막으로서의 적용성을 확인하였다. 또한 SEM 분석을 통해 제조된 소재의 표면 분석을 수행하여, 섬유의 직경, 균일성 및 직진성 확인을 통해 flux, SS 분리 성능의 원인을 확인하였다. 추후 나노섬유 수처리 분리막 제조공정에서의 첨가제 투입을 통해 막 파울링, 기계적 강도 등의 문제를 해결할 수 있을 것으로 예상되며, 촉매 기능이 첨가된 수처리용 분리막 제조를 위한 기초 인자로써 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. Park, J. H., "Study on Wastewater Reuse," Chonnam National University, Master's thesis(2011).
  2. Cha, B. J., Chi, S. D. and Kim, J. H., "Membrane Market for Water Treatment," Korean Ind. Chem. News, 14(6), 2-8(2011).
  3. Choi, H. C., Park, H. S. and Bae, J. Y., "Improved preparation method of polyethersulfone nanofiber membrane using electrospinning," patent 10-2014-0016039(2015).
  4. Jeon, Y. S. and Lim, J. W., "Preparation and performance of composite membrane prepared by Layer by Layer coating method," Membr. J., 25(6), 538-546(2015). https://doi.org/10.14579/MEMBRANE_JOURNAL.2015.25.6.538
  5. Yang, Y. F., Wan, L. S. and Xu, Z.-K., "Surface hydrophilization of microporous polypropylene membrane by the interfacial crosslinking of polyethylenimine," J. Membr. Sci., 337(70), 70-80(2009). https://doi.org/10.1016/j.memsci.2009.03.023
  6. Choi, J. S., Chan, S., Yip, G., Joo, H. J., Yang, H. J. and Frank, K. K., "Palladium-Zeolite nanofiber as an effective recyclable catalyst membrane for water treatment," Water Res., 101(15), 46-54(2016). https://doi.org/10.1016/j.watres.2016.05.051
  7. Choi, J. S., Chan, S., Joo, H. J., Yang, H. J. and Frank, K. K., "Three-dimensional (3D) palladium-zinc oxide nanowire nanofiber as photo-catalyst for water treatment," Water Res., 101(16), 362-369(2016). https://doi.org/10.1016/j.watres.2016.05.071
  8. Lee, J. W., So, D. S. and Su H. S., "Nanofibers : Preparations and Applications," Korean Ind. Chem. News, 13(1), 32-50(2010).
  9. Kim, I.-D., Rothschild, A., Lee, B. H., Kim, D. Y., Jo, S. M. and Tuller, H. L., "Ultrasensitive chemiresistors based on electrospun $TiO_2$ nanofibers," Nano Lett., 6(9), 2009-2013(2006). https://doi.org/10.1021/nl061197h

Cited by

  1. Nanocomposite of Polyacrylonitrile/Modified Polyethersulfone and Carbon Nano-onion: Effect of Dispersion on Physical Features, Interface and Fracture Behavior pp.1532-2351, 2019, https://doi.org/10.1080/01932691.2018.1505528