DOI QR코드

DOI QR Code

Effect of Tempering Temperature on the Microstructure and Mechanical Properties of ARMOX 500T Armor Plate

템퍼링 온도에 따른 ARMOX 500T 장갑재의 미세조직과 기계적 특성

  • Lim, Hyeon-Seok (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Lee, Jimin (Department of Materials Science and Engineering, Seoul National University of Science and Technology) ;
  • Song, Young-Beum (Agency for Defense Development) ;
  • Kim, Hong-Kyu (Agency for Defense Development) ;
  • Hwang, Byoungchul (Department of Materials Science and Engineering, Seoul National University of Science and Technology)
  • 임현석 (서울과학기술대학교 신소재공학과) ;
  • 이지민 (서울과학기술대학교 신소재공학과) ;
  • 송영범 (국방과학연구소) ;
  • 김홍규 (국방과학연구소) ;
  • 황병철 (서울과학기술대학교 신소재공학과)
  • Received : 2017.05.18
  • Accepted : 2017.06.08
  • Published : 2017.07.27

Abstract

The resistance of metallic materials to ballistic penetration generally depends on a number of parameters related to projectile, impact, and armor plate. Recently, armor materials have been required to have various properties such as hardness, strength, and impact toughness in order to maintain an excellent ballistic resistance even after impact. In the present study, the influence of tempering on the microstructure and mechanical properties of an ARMOX 500T armor steel plate was investigated and then compared with those of S45C and SCM440 steels. As the tempering temperature increased, the hardness and strength gradually decreased, whereas the ductility and impact toughness clearly increased because the hardness, tensile, and impact properties were affected by the microstructural evolution and precipitation occurring during tempering. On the other hand, temper embrittlement appeared at tempering temperatures of 300 to $400^{\circ}C$ for the impact specimens tested at low temperature.

Keywords

References

  1. S. W. Sohn and S. H. Hong, J. Korean Soc. Precis. Eng., 7, 7 (2002).
  2. H. K. Kim, S. S. Hong and I. O. Shim, Compos. Res., 2, 46 (2011).
  3. W. S. Lee and T. T. Su, J. Mater. Process Technol., 1, 198 (1999).
  4. T. Demir, M. Ubeyli and R. O. Ylldlrlm, J. Mater. Eng. Perform., 18, 145 (2009). https://doi.org/10.1007/s11665-008-9288-3
  5. S. N. Dikshit, V. V. Kutumbarao and G. Sundararajan, Int. J. Impact Eng., 16, 293 (1995). https://doi.org/10.1016/0734-743X(94)00041-T
  6. ORDP 20-170 Ordnance Engineering Design Handbook, Armor and its application to vehicles, Ordnance Corps, (1961).
  7. A. N. Isfahany, H. Saghafian and G. Borhani, J. Alloys Compd., 9, 3931 (2011).
  8. N. Zhong, X. D. Wang, L. Wang and Y. H. Rong, Mater. Sci. Eng. A, 1, 111 (2009).
  9. ASTM. : E23-16b, Standard Test Methods for Notched Bar Impact Testing of Metallic Materials, ASTM International, West Conshocken (2016).
  10. M. Kutz : Handbook of materials selection, John Wiley & Sons, (2002).
  11. W. D. Callister and D. G. Rethwisch : Materials science and engineering, John Wiley & Sons, (2011).
  12. R. A. Grange, C. R. Hribal and L. F. Porter, Metall. Trans. A, 11, 1775 (1977).
  13. H. S. Lee, B. Hwang, S. Lee, C. G. Lee and S. J. Kim, Metall. Mater.Trans. A, 8, 371 (2004).
  14. Y. Song, X. Li, L. Rong and Y. Li, Mater. Sci. Eng. A, 12, 4075 (2011).
  15. S. Gunduz, Mater. Lett., 27, 2381 (2009).
  16. S. I. Lee and B. Hwang, Korean J. Mater. Res., 24, 550 (2014). https://doi.org/10.3740/MRSK.2014.24.10.550
  17. D. V. Wilson and Y. A. Konnan, Acta Metall., 5, 617 (1964).
  18. R. E. Reed-Hill and R. Abbaschian, Physical Metall. Principles, Cengage Learning, (1964).
  19. D. H. Shin, J. Kim and K. T. Park, Met. Mater. Int., 7, 431 (2001). https://doi.org/10.1007/BF03027083
  20. N. S. Lim, C. W. Bang, S. Das, H. W.Jin, R. Ayer and C. G. Park, Met. Mater. Int., 18, 87 (2012). https://doi.org/10.1007/s12540-012-0011-4