DOI QR코드

DOI QR Code

Low Pressure Joining of SiCf/SiC Composites Using Ti3AlC2 or Ti3SiC2 MAX Phase Tape

  • Septiadi, Arifin (School of Materials Science and Engineering, Yeungnam University) ;
  • Fitriani, Pipit (School of Materials Science and Engineering, Yeungnam University) ;
  • Sharma, Amit Siddharth (School of Materials Science and Engineering, Yeungnam University) ;
  • Yoon, Dang-Hyok (School of Materials Science and Engineering, Yeungnam University)
  • Received : 2017.06.14
  • Accepted : 2017.07.06
  • Published : 2017.07.31

Abstract

$SiC_f/SiC$ composites were joined using a $60{\mu}m-thick$ $Ti_3AlC_2$ or $Ti_3SiC_2$ MAX phase tape. The filler tape was inserted between the $SiC_f/SiC$ composites containing a 12 wt.% $Al_2O_3-Y_2O_3$ sintering additive. The joining was performed to a butt-joint configuration at $1600^{\circ}C$ or $1750^{\circ}C$ in an Ar atmosphere by applying 3.5 MPa using a hot press. Microstructural and phase analyses at the joining interface confirmed the decomposition of $Ti_3AlC_2$ and $Ti_3SiC_2$, indicating the joining by solid-state diffusion. The results showed sound joining interface without the presence of cracks. Joining strengths higher than 150 MPa could be obtained for the joints using $Ti_3AlC_2$ or $Ti_3SiC_2$ at $1750^{\circ}C$, while those for joined at $1600^{\circ}C$ decreased to 100 MPa approximately without the deformation of the joining bodies. The thickness of initial filler tape was reduced significantly after joining because of the decomposition and migration of MAX phase owing to the plasticity at high temperatures.

Keywords

References

  1. Y. K. Seo, Y. W. Kim, T. Nishimura, and W. S. Seo, "High-Temperature Strength of a Thermally Conductive Silicon Carbide Ceramic Sintered with Yttria and Scandia," J. Eur. Ceram. Soc., 36 [15] 3755-60 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.02.028
  2. F. Rodriguez-Rojas, A. L. Ortiz, F. Guiberteau, and M. Nygren, "Anomalous Oxidation Behaviour of Pressureless Liquid-Phase-Sintered SiC," J. Eur. Ceram. Soc., 31 [13] 2393-400 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.05.015
  3. V. M. Candelario, O. Borrero-Lopez, F. Guiberteau, R. Moreno, and A. L. Ortiz, "Sliding-Wear Resistance of Liquid-Phase-Sintered SiC Containing Graphite Nanodispersoids," J. Eur. Ceram. Soc., 34 [10] 2597-602 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.02.033
  4. E. Ciudad, E. Sanchez-Gonzalez, O. Borrero-Lopez, F. Guiberteau, M. Nygren, and A. L. Ortiz, "Sliding-Wear Resistance of Ultrafine-Grained SiC Densified by Spark Plasma Sintering with $3Y_2O_3+5Al_2O_3$ or $Y_3Al_5O_{12}$ Additives," Scr. Mater., 69 [8] 598-601 (2013). https://doi.org/10.1016/j.scriptamat.2013.07.007
  5. L. L. Snead, T. Nozawa, Y. Katoh, T. S. Byun, S. Kondo, and D. A. Petti, "Handbook of SiC Properties for Fuel Performance Modeling," J. Nucl. Mater., 371 [1] 329-77 (2007). https://doi.org/10.1016/j.jnucmat.2007.05.016
  6. Y. Zhou, W. C. Zhou, F. Luo, and D. M. Zhu, "Effects of Dip-Coated BN Interphase on Mechanical Properties of $SiC_f$/SiC Composites Prepared by CVI Process," Trans. Nonferrous Met. Soc. China, 24 1400-6 (2014). https://doi.org/10.1016/S1003-6326(14)63205-2
  7. K. Yoshida, H. Akimoto, T. Yano, M. Kotani, and T. Ogasawara, "Mechanical Properties of Unidirectional and Crossply $SiC_f$/SiC Composites Using SiC Fibers with Carbon Interphase Formed by Electrophoretic Deposition Process," Prog. Nucl. Energy, 82 148-52 (2015). https://doi.org/10.1016/j.pnucene.2014.07.027
  8. J. Yin, S. H. Lee, L. Feng, Y. Zhu, X. Liu, and Z. Huang, "Fabrication of $SiC_f$/SiC Composites by Hybrid Techniques of Electrophoretic Deposition and Polymer Impregnation and Pyrolysis," Ceram. Int., 42 [14] 16431-35 (2016). https://doi.org/10.1016/j.ceramint.2016.07.177
  9. Y. Mu, W. Zhou, Y. Hu, D. Ding, F. Luo, and Y. Qing, "Enhanced Microwave Absorbing Properties of 2.5D $SiC_f$/SiC Composites Fabricated by a Modified Precursor Infiltration and Pyrolysis Process," J. Alloys Compd., 637 261-66 (2015). https://doi.org/10.1016/j.jallcom.2015.03.031
  10. R. Usukawa, H. Oda, and T. Ishikawa, "Conversion Process of Amorphous Si-Al-C-O Fiber into Nearly Stoichiometric SiC Polycrystalline Fiber," J. Korean Ceram. Soc., 53 [6] 610-14 (2016). https://doi.org/10.4191/kcers.2016.53.6.610
  11. T. Ishikawa and H. Oda, "Structural Control Aiming for High-performance SiC Polycrystalline Fiber," J. Korean Ceram. Soc., 53 [6] 615-21 (2016). https://doi.org/10.4191/kcers.2016.53.6.615
  12. S. Grasso, P. Tatarko, S. Rizzo, H. Porwal, C. Hu, Y. Katoh, M. Salvo, M. J. Reece, and M. Ferraris, "Joining of ${\beta}$-SiC by Spark Plasma Sintering," J. Eur. Ceram. Soc., 34 [7] 1681-86 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.12.023
  13. Y. I. Jung, J. H. Park, H. G. Kim, D. J. Park, J. Y. Park, and W. J. Kim, "Effect of Ti and Si Interlayer Materials on the Joining of SiC Ceramics," Nucl. Eng. Technol., 48 [4] 1009-14 (2016). https://doi.org/10.1016/j.net.2016.03.001
  14. M. Ferraris, M. Salvo, V. Casalegno, A. Ciampichetti, F. Smeacetto, and M. Zucchetti, "Joining of Machined SiC/SiC Composites for Thermonuclear Fusion Reactors," J. Nucl. Mater., 375 [3] 410-15 (2008). https://doi.org/10.1016/j.jnucmat.2008.02.020
  15. M. Ferraris, M. Salvo, V. Casalegno, S. Han, Y. Katoh, H. C. Jung, T. Hinoki, and A. Kohyama, "Joining of SiC-Based Materials for Nuclear Energy Applications," J. Nucl. Mater., 417 [1] 379-82 (2011). https://doi.org/10.1016/j.jnucmat.2010.12.160
  16. H. C. Jung, Y. H. Park, J. S. Park, T. Hinoki, and A. Kohyama, "R&D of Joining Technology for SiC Components with Channel," J. Nucl. Mater., 386-388 847-51 (2009). https://doi.org/10.1016/j.jnucmat.2008.12.263
  17. C. A. Lewinsohn, M. Singh, T. Shibayama, T. Hinoki, M. Ando, Y. Katoh, and A. Kohyama, "Joining of Silicon Carbide Composites for Fusion Energy Applications," J. Nucl. Mater., 283-287 1258-61 (2000). https://doi.org/10.1016/S0022-3115(00)00247-6
  18. H. Dong, S. Li, Y. Teng, and W. Ma, "Joining of SiC Ceramic-Based Materials with Ternary Carbide $Ti_3SiC_2$," Mater. Sci. Eng. B, 176 [1] 60-4 (2011). https://doi.org/10.1016/j.mseb.2010.09.002
  19. H. Dong, Y. Yu, X. Jin, X. Tian, W. He, and W. Ma, "Microstructure and Mechanical Properties of SiC-SiC Joints Joined by Spark Plasma Sintering," Ceram. Int., 42 [13] 14463-68 (2016). https://doi.org/10.1016/j.ceramint.2016.06.049
  20. X. Zhou, Y. H. Han, X. Shen, S. Du, J. Lee, and Q. Huang, "Fast Joining SiC Ceramics with $Ti_3SiC_2$ Tape Film by Electric Field-Assisted Sintering Technology," J. Nucl. Mater., 466 322-27 (2015). https://doi.org/10.1016/j.jnucmat.2015.08.004
  21. M. Singh, "A Reaction Forming Method for Joining of Silicon Carbide-Based Ceramics," Scr. Mater., 37 [8] 1151-54 (1997). https://doi.org/10.1016/S1359-6462(97)00233-9
  22. G. Aiello, L. Giancarli, H. Golfier, and J. F. Maire, "Modeling of Mechanical Behavior and Design Criteria for $SiC_f$/SiC Composite Structures in Fusion Reactors," Fusion Eng. Des., 65 [1] 77-88 (2003). https://doi.org/10.1016/S0920-3796(02)00212-0
  23. A. Zhou, C. Wang, and Y. Hunag, "Synthesis and Mechanical Properties of $Ti_3AlC_2$ by Spark Plasma Sintering," Synthesis (Stuttg.), 8 3111-15 (2003).
  24. Y. Zhou and Z. Sun, "Temperature Fluctuation/Hot Pressing Synthesis of $Ti_3SiC_2$," Simulation, 35 [17] 4343-46 (2000).
  25. X. Xu, Y. Li, B. Mei, J. Zhu, H. Liu, and J. Qu, "Study on the Isothermal Oxidation Behavior in Air of $Ti_3AlC_2$ Sintered by Hot Pressing," Sci. China, Ser. E Technol. Sci., 49 [5] 513-20 (2006). https://doi.org/10.1007/s11431-006-0513-8
  26. J. Xie, X. Wang, A. Li, F. Li, and Y. Zhou, "Corrosion Behavior of Selected $M_{n+1}AX_n$ Phases in Hot Concentrated HCl Solution: Effect of A Element and MX Layer," Corros. Sci., 60 129-35 (2012). https://doi.org/10.1016/j.corsci.2012.03.047
  27. E. N. Hoffman, D. W. Vinson, R. L. Sindelar, D. J. Tallman, G. Kohse, and M. W. Barsoum, "MAX Phase Carbides and Nitrides: Properties for Future Nuclear Power Plant In-Core Applications and Neutron Transmutation Analysis," Nucl. Eng. Des., 244 17-24 (2012). https://doi.org/10.1016/j.nucengdes.2011.12.009
  28. H. Lee, D. Kim, Y. S. Jeong, J. Y. Park, and W. Kim, "Formation of $Ti_3SiC_2$ Interphase of SiC Fiber by Electrophoretic Deposition Method," J. Korean Ceram. Soc., 53 [1] 87-92 (2016). https://doi.org/10.4191/kcers.2016.53.1.87
  29. G. W. Bentzel, M. Ghidiu, B. Anasori, and M. W. Barsoum, "On the Interactions of $Ti_2AlC$, $Ti_3AlC_2$, $Ti_3SiC_2$ and $Cr_2AlC$ with Silicon Carbide and Pyrolytic Carbon at $1300^{\circ}C$," J. Eur. Ceram. Soc., 35 [15] 4107-14 (2015). https://doi.org/10.1016/j.jeurceramsoc.2015.07.029
  30. C. S. Park, F. Zheng, S. Salamone, and R. K. Bordia, "Processing of Composites in the Ti-Si-C System," J. Mater. Sci., 36 [13] 3313-22 (2001). https://doi.org/10.1023/A:1017963109176
  31. H. W. Yu, P. Fitriani, S. Lee, J. Y. Park, and D. H. Yoon, "Fabrication of the Tube-Shaped $SiC_f$/SiC by Hot Pressing," Ceram. Int., 41 [6] 7890-96 (2015). https://doi.org/10.1016/j.ceramint.2015.02.127
  32. G. Y. Gil and D. H. Yoon, "Densification of $SiC_f$/SiC Composites by Electrophoretic Infiltration Combined with Ultrasonication," J. Ceram. Process. Res., 12 [4] 371-75 (2011).
  33. P. Yonathan, J. H. Lee, D. H. Yoon, W. J. Kim, and J. Y. Park, "Improvement of $SiC_f$/SiC Density by Slurry Infiltration and Tape Stacking," Mater. Res. Bull., 44 [11] 2116-22 (2009). https://doi.org/10.1016/j.materresbull.2009.07.004
  34. W. K. Pang, I. M. Low, B. H. O'Connor, A. J. Studer, V. K. Peterson, Z. M. Sun, and J. P. Palmquist, "Comparison of Thermal Stability in MAX 211 and 312 Phases," J. Phys. Conf. Ser., 251 [1] 12025 (2010). https://doi.org/10.1088/1742-6596/251/1/012025
  35. M. Stumpf, T. Fey, and P. Greil, "Thermochemical Calculations of the Stability of $Ti_2AlC$ in Various Atmospheres," J. Ceram. Sci. Tech., 7 [3] 223-28 (2016).
  36. S. Sen, M. Lake, N. Kroppen, P. Farber, J. Wilden, and P. Schaaf, "Self-Propagating Exothermic Reaction Analysis in Ti/Al Reactive Films Using Experiments and Computational Fluid Dynamics Simulation," Appl. Surf. Sci., 396 1490-98 (2017). https://doi.org/10.1016/j.apsusc.2016.11.197
  37. J. S. Byun, J. H. Shim, and Y. W. Cho, "Influence of Stearic Acid on Mechanochemical Reaction between Ti and BN Powders," J. Alloys Compd., 365 [1] 149-56 (2004). https://doi.org/10.1016/S0925-8388(03)00638-8
  38. P. Rogl, "Materials Science of Ternary Metal Boron Nitrides," Int. J. Inorg. Mater., 3 [3] 201-9 (2001). https://doi.org/10.1016/S1466-6049(01)00009-5
  39. N. F. Gao, Y. Miyamoto, and D. Zhang, "On Physical and Thermochemical Properties of High-Purity $Ti_3SiC_2$," Mater. Lett., 55 [1] 61-6 (2002). https://doi.org/10.1016/S0167-577X(01)00620-6
  40. M. W. Barsoum, "The Topotactic Transformation of $Ti_3SiC_2$ into a Partially Ordered Cubic Ti($C_{0.67}Si_{0.06}$) Phase by the Diffusion of Si into Molten Cryolite," J. Electrochem. Soc., 146 [10] 3919-23 (1999). https://doi.org/10.1149/1.1392573
  41. J. Emmerlich, D. Music, P. Eklund, O. Wilhelmsson, U. Jansson, J. M. Schneider, H. Hogberg, and L. Hultman, "Thermal Stability of $Ti_3SiC_2$ Thin Films," Acta Mater., 55 [4] 1479-88 (2007). https://doi.org/10.1016/j.actamat.2006.10.010
  42. H. Zhang, X. H. Wang, P. Wan, X. Zhan, and Y. C. Zhou, "Insights into High-Temperature Uniaxial Compression Deformation Behavior of $Ti_3AlC_2$," J. Am. Ceram. Soc., 98 [10] 3332-37 (2015). https://doi.org/10.1111/jace.13746
  43. Z. F. Zhang, Z. M. Sun, and H. Hashimoto, "Deformation and Fracture Behavior of Ternary Compound $Ti_3SiC_2$ at 25 - $1300^{\circ}C$," Mater. Lett., 57 [7] 1295-99 (2003). https://doi.org/10.1016/S0167-577X(02)00974-6
  44. X. Yin, M. Li, J. Xu, J. Zhang, and Y. Zhou, "Direct Diffusion Bonding of $Ti_3SiC_2$ and $Ti_3AlC_2$," Mater. Res. Bull., 44 [6] 1379-84 (2009). https://doi.org/10.1016/j.materresbull.2008.12.002
  45. X. H. Yin, M. S. Li, T. P. Li, and Y. C. Zhou, "Diffusion Bonding of $Ti_3AlC_2$ Ceramic via a Si Interlayer," J. Mater. Sci., 42 [17] 7081-85 (2007). https://doi.org/10.1007/s10853-006-1491-8
  46. H. Wang, H. Han, G. Yin, C. Y. Wang, Y. Y. Hou, J. Tang, J. X. Dai, C. L. Ren, W. Zhang, and P. Huai, "First-Principles Study of Vacancies in $Ti_3SiC_2$ and $Ti_3AlC_2$," Materials, 10 [2] 103 (2017). https://doi.org/10.3390/ma10020103
  47. R. Radhakrishnan, J. J. Williams, and M. Akinc, "Synthesis and High-Temperature Stability of $Ti_3SiC_2$," J. Alloys Compd., 285 [1] 85-8 (1999). https://doi.org/10.1016/S0925-8388(99)00003-1
  48. Y. Xu, X. Bai, X. Zha, Q. Huang, J. He, K. Luo, Y. Zhou, T. C. Germann, J. S. Francisco, and S. Du, "New Insight into the Helium-Induced Damage in MAX Phase $Ti_3AlC_2$ by First-Principles Studies," J. Chem. Phys., 143 [11] 114707 (2015). https://doi.org/10.1063/1.4931398
  49. Y. Zhou and Z. Sun, "Crystallographic Relations between $Ti_3SiC_2$ and TiC," Mater. Res. Innovations, 3 [5] 286-91 (2000). https://doi.org/10.1007/PL00010876
  50. R. M. German, P. Suri, and S. J. Park, "Review: Liquid Phase Sintering," J. Mater. Sci., 44 [1] 1-39 (2009). https://doi.org/10.1007/s10853-008-3008-0

Cited by

  1. An Overview of Parameters Controlling the Decomposition and Degradation of Ti-Based Mn+1AXn Phases vol.12, pp.3, 2019, https://doi.org/10.3390/ma12030473
  2. Mechanical Properties of Cf/SiC Composite Using a Combined Process of Chemical Vapor Infiltration and Precursor Infiltration Pyrolysis vol.55, pp.4, 2017, https://doi.org/10.4191/kcers.2018.55.4.11
  3. A review on the joining of SiC for high-temperature applications vol.57, pp.3, 2017, https://doi.org/10.1007/s43207-020-00021-4
  4. Processing of MAX phases: From synthesis to applications vol.104, pp.2, 2017, https://doi.org/10.1111/jace.17544