References
- Y. K. Seo, Y. W. Kim, T. Nishimura, and W. S. Seo, "High-Temperature Strength of a Thermally Conductive Silicon Carbide Ceramic Sintered with Yttria and Scandia," J. Eur. Ceram. Soc., 36 [15] 3755-60 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.02.028
- F. Rodriguez-Rojas, A. L. Ortiz, F. Guiberteau, and M. Nygren, "Anomalous Oxidation Behaviour of Pressureless Liquid-Phase-Sintered SiC," J. Eur. Ceram. Soc., 31 [13] 2393-400 (2011). https://doi.org/10.1016/j.jeurceramsoc.2011.05.015
- V. M. Candelario, O. Borrero-Lopez, F. Guiberteau, R. Moreno, and A. L. Ortiz, "Sliding-Wear Resistance of Liquid-Phase-Sintered SiC Containing Graphite Nanodispersoids," J. Eur. Ceram. Soc., 34 [10] 2597-602 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.02.033
-
E. Ciudad, E. Sanchez-Gonzalez, O. Borrero-Lopez, F. Guiberteau, M. Nygren, and A. L. Ortiz, "Sliding-Wear Resistance of Ultrafine-Grained SiC Densified by Spark Plasma Sintering with
$3Y_2O_3+5Al_2O_3$ or$Y_3Al_5O_{12}$ Additives," Scr. Mater., 69 [8] 598-601 (2013). https://doi.org/10.1016/j.scriptamat.2013.07.007 - L. L. Snead, T. Nozawa, Y. Katoh, T. S. Byun, S. Kondo, and D. A. Petti, "Handbook of SiC Properties for Fuel Performance Modeling," J. Nucl. Mater., 371 [1] 329-77 (2007). https://doi.org/10.1016/j.jnucmat.2007.05.016
-
Y. Zhou, W. C. Zhou, F. Luo, and D. M. Zhu, "Effects of Dip-Coated BN Interphase on Mechanical Properties of
$SiC_f$ /SiC Composites Prepared by CVI Process," Trans. Nonferrous Met. Soc. China, 24 1400-6 (2014). https://doi.org/10.1016/S1003-6326(14)63205-2 -
K. Yoshida, H. Akimoto, T. Yano, M. Kotani, and T. Ogasawara, "Mechanical Properties of Unidirectional and Crossply
$SiC_f$ /SiC Composites Using SiC Fibers with Carbon Interphase Formed by Electrophoretic Deposition Process," Prog. Nucl. Energy, 82 148-52 (2015). https://doi.org/10.1016/j.pnucene.2014.07.027 -
J. Yin, S. H. Lee, L. Feng, Y. Zhu, X. Liu, and Z. Huang, "Fabrication of
$SiC_f$ /SiC Composites by Hybrid Techniques of Electrophoretic Deposition and Polymer Impregnation and Pyrolysis," Ceram. Int., 42 [14] 16431-35 (2016). https://doi.org/10.1016/j.ceramint.2016.07.177 -
Y. Mu, W. Zhou, Y. Hu, D. Ding, F. Luo, and Y. Qing, "Enhanced Microwave Absorbing Properties of 2.5D
$SiC_f$ /SiC Composites Fabricated by a Modified Precursor Infiltration and Pyrolysis Process," J. Alloys Compd., 637 261-66 (2015). https://doi.org/10.1016/j.jallcom.2015.03.031 - R. Usukawa, H. Oda, and T. Ishikawa, "Conversion Process of Amorphous Si-Al-C-O Fiber into Nearly Stoichiometric SiC Polycrystalline Fiber," J. Korean Ceram. Soc., 53 [6] 610-14 (2016). https://doi.org/10.4191/kcers.2016.53.6.610
- T. Ishikawa and H. Oda, "Structural Control Aiming for High-performance SiC Polycrystalline Fiber," J. Korean Ceram. Soc., 53 [6] 615-21 (2016). https://doi.org/10.4191/kcers.2016.53.6.615
-
S. Grasso, P. Tatarko, S. Rizzo, H. Porwal, C. Hu, Y. Katoh, M. Salvo, M. J. Reece, and M. Ferraris, "Joining of
${\beta}$ -SiC by Spark Plasma Sintering," J. Eur. Ceram. Soc., 34 [7] 1681-86 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.12.023 - Y. I. Jung, J. H. Park, H. G. Kim, D. J. Park, J. Y. Park, and W. J. Kim, "Effect of Ti and Si Interlayer Materials on the Joining of SiC Ceramics," Nucl. Eng. Technol., 48 [4] 1009-14 (2016). https://doi.org/10.1016/j.net.2016.03.001
- M. Ferraris, M. Salvo, V. Casalegno, A. Ciampichetti, F. Smeacetto, and M. Zucchetti, "Joining of Machined SiC/SiC Composites for Thermonuclear Fusion Reactors," J. Nucl. Mater., 375 [3] 410-15 (2008). https://doi.org/10.1016/j.jnucmat.2008.02.020
- M. Ferraris, M. Salvo, V. Casalegno, S. Han, Y. Katoh, H. C. Jung, T. Hinoki, and A. Kohyama, "Joining of SiC-Based Materials for Nuclear Energy Applications," J. Nucl. Mater., 417 [1] 379-82 (2011). https://doi.org/10.1016/j.jnucmat.2010.12.160
- H. C. Jung, Y. H. Park, J. S. Park, T. Hinoki, and A. Kohyama, "R&D of Joining Technology for SiC Components with Channel," J. Nucl. Mater., 386-388 847-51 (2009). https://doi.org/10.1016/j.jnucmat.2008.12.263
- C. A. Lewinsohn, M. Singh, T. Shibayama, T. Hinoki, M. Ando, Y. Katoh, and A. Kohyama, "Joining of Silicon Carbide Composites for Fusion Energy Applications," J. Nucl. Mater., 283-287 1258-61 (2000). https://doi.org/10.1016/S0022-3115(00)00247-6
-
H. Dong, S. Li, Y. Teng, and W. Ma, "Joining of SiC Ceramic-Based Materials with Ternary Carbide
$Ti_3SiC_2$ ," Mater. Sci. Eng. B, 176 [1] 60-4 (2011). https://doi.org/10.1016/j.mseb.2010.09.002 - H. Dong, Y. Yu, X. Jin, X. Tian, W. He, and W. Ma, "Microstructure and Mechanical Properties of SiC-SiC Joints Joined by Spark Plasma Sintering," Ceram. Int., 42 [13] 14463-68 (2016). https://doi.org/10.1016/j.ceramint.2016.06.049
-
X. Zhou, Y. H. Han, X. Shen, S. Du, J. Lee, and Q. Huang, "Fast Joining SiC Ceramics with
$Ti_3SiC_2$ Tape Film by Electric Field-Assisted Sintering Technology," J. Nucl. Mater., 466 322-27 (2015). https://doi.org/10.1016/j.jnucmat.2015.08.004 - M. Singh, "A Reaction Forming Method for Joining of Silicon Carbide-Based Ceramics," Scr. Mater., 37 [8] 1151-54 (1997). https://doi.org/10.1016/S1359-6462(97)00233-9
-
G. Aiello, L. Giancarli, H. Golfier, and J. F. Maire, "Modeling of Mechanical Behavior and Design Criteria for
$SiC_f$ /SiC Composite Structures in Fusion Reactors," Fusion Eng. Des., 65 [1] 77-88 (2003). https://doi.org/10.1016/S0920-3796(02)00212-0 -
A. Zhou, C. Wang, and Y. Hunag, "Synthesis and Mechanical Properties of
$Ti_3AlC_2$ by Spark Plasma Sintering," Synthesis (Stuttg.), 8 3111-15 (2003). -
Y. Zhou and Z. Sun, "Temperature Fluctuation/Hot Pressing Synthesis of
$Ti_3SiC_2$ ," Simulation, 35 [17] 4343-46 (2000). -
X. Xu, Y. Li, B. Mei, J. Zhu, H. Liu, and J. Qu, "Study on the Isothermal Oxidation Behavior in Air of
$Ti_3AlC_2$ Sintered by Hot Pressing," Sci. China, Ser. E Technol. Sci., 49 [5] 513-20 (2006). https://doi.org/10.1007/s11431-006-0513-8 -
J. Xie, X. Wang, A. Li, F. Li, and Y. Zhou, "Corrosion Behavior of Selected
$M_{n+1}AX_n$ Phases in Hot Concentrated HCl Solution: Effect of A Element and MX Layer," Corros. Sci., 60 129-35 (2012). https://doi.org/10.1016/j.corsci.2012.03.047 - E. N. Hoffman, D. W. Vinson, R. L. Sindelar, D. J. Tallman, G. Kohse, and M. W. Barsoum, "MAX Phase Carbides and Nitrides: Properties for Future Nuclear Power Plant In-Core Applications and Neutron Transmutation Analysis," Nucl. Eng. Des., 244 17-24 (2012). https://doi.org/10.1016/j.nucengdes.2011.12.009
-
H. Lee, D. Kim, Y. S. Jeong, J. Y. Park, and W. Kim, "Formation of
$Ti_3SiC_2$ Interphase of SiC Fiber by Electrophoretic Deposition Method," J. Korean Ceram. Soc., 53 [1] 87-92 (2016). https://doi.org/10.4191/kcers.2016.53.1.87 -
G. W. Bentzel, M. Ghidiu, B. Anasori, and M. W. Barsoum, "On the Interactions of
$Ti_2AlC$ ,$Ti_3AlC_2$ ,$Ti_3SiC_2$ and$Cr_2AlC$ with Silicon Carbide and Pyrolytic Carbon at$1300^{\circ}C$ ," J. Eur. Ceram. Soc., 35 [15] 4107-14 (2015). https://doi.org/10.1016/j.jeurceramsoc.2015.07.029 - C. S. Park, F. Zheng, S. Salamone, and R. K. Bordia, "Processing of Composites in the Ti-Si-C System," J. Mater. Sci., 36 [13] 3313-22 (2001). https://doi.org/10.1023/A:1017963109176
-
H. W. Yu, P. Fitriani, S. Lee, J. Y. Park, and D. H. Yoon, "Fabrication of the Tube-Shaped
$SiC_f$ /SiC by Hot Pressing," Ceram. Int., 41 [6] 7890-96 (2015). https://doi.org/10.1016/j.ceramint.2015.02.127 -
G. Y. Gil and D. H. Yoon, "Densification of
$SiC_f$ /SiC Composites by Electrophoretic Infiltration Combined with Ultrasonication," J. Ceram. Process. Res., 12 [4] 371-75 (2011). -
P. Yonathan, J. H. Lee, D. H. Yoon, W. J. Kim, and J. Y. Park, "Improvement of
$SiC_f$ /SiC Density by Slurry Infiltration and Tape Stacking," Mater. Res. Bull., 44 [11] 2116-22 (2009). https://doi.org/10.1016/j.materresbull.2009.07.004 - W. K. Pang, I. M. Low, B. H. O'Connor, A. J. Studer, V. K. Peterson, Z. M. Sun, and J. P. Palmquist, "Comparison of Thermal Stability in MAX 211 and 312 Phases," J. Phys. Conf. Ser., 251 [1] 12025 (2010). https://doi.org/10.1088/1742-6596/251/1/012025
-
M. Stumpf, T. Fey, and P. Greil, "Thermochemical Calculations of the Stability of
$Ti_2AlC$ in Various Atmospheres," J. Ceram. Sci. Tech., 7 [3] 223-28 (2016). - S. Sen, M. Lake, N. Kroppen, P. Farber, J. Wilden, and P. Schaaf, "Self-Propagating Exothermic Reaction Analysis in Ti/Al Reactive Films Using Experiments and Computational Fluid Dynamics Simulation," Appl. Surf. Sci., 396 1490-98 (2017). https://doi.org/10.1016/j.apsusc.2016.11.197
- J. S. Byun, J. H. Shim, and Y. W. Cho, "Influence of Stearic Acid on Mechanochemical Reaction between Ti and BN Powders," J. Alloys Compd., 365 [1] 149-56 (2004). https://doi.org/10.1016/S0925-8388(03)00638-8
- P. Rogl, "Materials Science of Ternary Metal Boron Nitrides," Int. J. Inorg. Mater., 3 [3] 201-9 (2001). https://doi.org/10.1016/S1466-6049(01)00009-5
-
N. F. Gao, Y. Miyamoto, and D. Zhang, "On Physical and Thermochemical Properties of High-Purity
$Ti_3SiC_2$ ," Mater. Lett., 55 [1] 61-6 (2002). https://doi.org/10.1016/S0167-577X(01)00620-6 -
M. W. Barsoum, "The Topotactic Transformation of
$Ti_3SiC_2$ into a Partially Ordered Cubic Ti($C_{0.67}Si_{0.06}$ ) Phase by the Diffusion of Si into Molten Cryolite," J. Electrochem. Soc., 146 [10] 3919-23 (1999). https://doi.org/10.1149/1.1392573 -
J. Emmerlich, D. Music, P. Eklund, O. Wilhelmsson, U. Jansson, J. M. Schneider, H. Hogberg, and L. Hultman, "Thermal Stability of
$Ti_3SiC_2$ Thin Films," Acta Mater., 55 [4] 1479-88 (2007). https://doi.org/10.1016/j.actamat.2006.10.010 -
H. Zhang, X. H. Wang, P. Wan, X. Zhan, and Y. C. Zhou, "Insights into High-Temperature Uniaxial Compression Deformation Behavior of
$Ti_3AlC_2$ ," J. Am. Ceram. Soc., 98 [10] 3332-37 (2015). https://doi.org/10.1111/jace.13746 -
Z. F. Zhang, Z. M. Sun, and H. Hashimoto, "Deformation and Fracture Behavior of Ternary Compound
$Ti_3SiC_2$ at 25 -$1300^{\circ}C$ ," Mater. Lett., 57 [7] 1295-99 (2003). https://doi.org/10.1016/S0167-577X(02)00974-6 -
X. Yin, M. Li, J. Xu, J. Zhang, and Y. Zhou, "Direct Diffusion Bonding of
$Ti_3SiC_2$ and$Ti_3AlC_2$ ," Mater. Res. Bull., 44 [6] 1379-84 (2009). https://doi.org/10.1016/j.materresbull.2008.12.002 -
X. H. Yin, M. S. Li, T. P. Li, and Y. C. Zhou, "Diffusion Bonding of
$Ti_3AlC_2$ Ceramic via a Si Interlayer," J. Mater. Sci., 42 [17] 7081-85 (2007). https://doi.org/10.1007/s10853-006-1491-8 -
H. Wang, H. Han, G. Yin, C. Y. Wang, Y. Y. Hou, J. Tang, J. X. Dai, C. L. Ren, W. Zhang, and P. Huai, "First-Principles Study of Vacancies in
$Ti_3SiC_2$ and$Ti_3AlC_2$ ," Materials, 10 [2] 103 (2017). https://doi.org/10.3390/ma10020103 -
R. Radhakrishnan, J. J. Williams, and M. Akinc, "Synthesis and High-Temperature Stability of
$Ti_3SiC_2$ ," J. Alloys Compd., 285 [1] 85-8 (1999). https://doi.org/10.1016/S0925-8388(99)00003-1 -
Y. Xu, X. Bai, X. Zha, Q. Huang, J. He, K. Luo, Y. Zhou, T. C. Germann, J. S. Francisco, and S. Du, "New Insight into the Helium-Induced Damage in MAX Phase
$Ti_3AlC_2$ by First-Principles Studies," J. Chem. Phys., 143 [11] 114707 (2015). https://doi.org/10.1063/1.4931398 -
Y. Zhou and Z. Sun, "Crystallographic Relations between
$Ti_3SiC_2$ and TiC," Mater. Res. Innovations, 3 [5] 286-91 (2000). https://doi.org/10.1007/PL00010876 - R. M. German, P. Suri, and S. J. Park, "Review: Liquid Phase Sintering," J. Mater. Sci., 44 [1] 1-39 (2009). https://doi.org/10.1007/s10853-008-3008-0
Cited by
- An Overview of Parameters Controlling the Decomposition and Degradation of Ti-Based Mn+1AXn Phases vol.12, pp.3, 2019, https://doi.org/10.3390/ma12030473
- Mechanical Properties of Cf/SiC Composite Using a Combined Process of Chemical Vapor Infiltration and Precursor Infiltration Pyrolysis vol.55, pp.4, 2017, https://doi.org/10.4191/kcers.2018.55.4.11
- A review on the joining of SiC for high-temperature applications vol.57, pp.3, 2017, https://doi.org/10.1007/s43207-020-00021-4
- Processing of MAX phases: From synthesis to applications vol.104, pp.2, 2017, https://doi.org/10.1111/jace.17544