DOI QR코드

DOI QR Code

Organic-Inorganic Hybrid Thermoelectric Material Synthesis and Properties

  • Kim, Jiwon (Electrochemistry Research Group, Materials Processing Division, Korea Institute of Materials Science) ;
  • Lim, Jae-Hong (Electrochemistry Research Group, Materials Processing Division, Korea Institute of Materials Science)
  • 투고 : 2017.07.14
  • 심사 : 2017.07.19
  • 발행 : 2017.07.31

초록

Organic-inorganic hybrid thermoelectric materials have obtained increasing attention because it opens the possibility of enhancing thermoelectric performance by utilizing the low thermal conductivity of organic thermoelectric materials and the high Seebeck coefficient of inorganic thermoelectric materials. Moreover, the organic-inorganic hybrid thermoelectric materials possess numerous advantages, including functional aspects such as flexibility or transparency, low cost raw materials, and simplified fabrication processes, thus, allowing for a wide range of potential applications. In this study, the types and synthesis methods of organic-inorganic thermoelectric hybrid materials were discussed along with the methods used to enhance their thermoelectric properties. As a key factor to maximize the thermoelectric performances of hybrid thermoelectric materials, the nanoengineering to control the nanostructure of the inorganic materials as well as the modification of the organic material structure and doping level are considered, respectively. Meanwhile, the interface between the inorganic and organic phase is also important to develop the hybrid thermoelectric module with excellent reliability and high thermoelectric efficiency in addition to its performance in various electronic devices.

키워드

참고문헌

  1. G. J. Snyder and E. S. Toberer, "Complex Thermoelectric Materials," Nat. Mater., 7 [2] 105-14 (2008). https://doi.org/10.1038/nmat2090
  2. W. Xie, X. Tang, Y. Yan, Q. Zhang, and T. M. Tritt, "Unique Nanostructures and Enhanced Thermoelectric Performance of Melt-Spun BiSbTe Alloys," Appl. Phys. Lett., 94 [10] 102111 (2009). https://doi.org/10.1063/1.3097026
  3. S. I. Kim, K. Ahn, D.-H. Yeon, S. Hwang, H.-S. Kim, S. M. Lee, and K. H. Lee, "Enhancement of Seebeck Coefficient in $Bi_{0.5}Sb_{1.5}Te_3$ with High-Density Tellurium Nanoinclusions," Appl. Phys. Express, 4 [9] 091801 (2011). https://doi.org/10.1143/APEX.4.091801
  4. J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. J. Snyder "Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States," Science, 321 [5888] 554-57 (2008). https://doi.org/10.1126/science.1159725
  5. M. Hong, T. C. Chasapis, Z.-G. Chen, L. Yang, M. G. Kanatzidis, G. J. Snyder, and J. Zou, "n-Type $Bi_2Te_{3-x}Se_x$ Nanoplates with Enhanced Thermoelectric Efficiency Driven by Wide-Frequency Phonon Scatterings and Synergistic Carrier Scatterings," ACS Nano, 10 [4] 4719-27 (2016). https://doi.org/10.1021/acsnano.6b01156
  6. J. Carrete, N. Mingo, G. Tian, H. Agren, A. Baev, and P. N. Prasad, "Thermoelectric Properties of Hybrid Organic-Inorganic Superlattices," J. Phys. Chem. C, 116 [20] 10881-86 (2012). https://doi.org/10.1021/jp3025039
  7. Y. H. Kim, C. Sachse, M. L. Machala, C. May, L. Muller-Meskamp, and K. Leo, "Highly Conductive PEDOT:PSS Electrode with Optimized Solvent and Thermal Post-Treatment for ITO-Free Organic Solar Cells," Adv. Funct. Mater., 21 [6] 1076-81 (2011). https://doi.org/10.1002/adfm.201002290
  8. M. Martin-Gonzalez, O. Caballero-Calero, and P. Diaz-Chao, "Nanoengineering Thermoelectrics for 21st Century: Energy Harvesting and Other Trends in the Field," Renewable Sustainable Energy Rev., 24 288-305 (2013). https://doi.org/10.1016/j.rser.2013.03.008
  9. M. S. Dresselhaus, G. Chen, M. Y. Tang, R. G. Yang, H. Lee, D. Z. Wang, Z. F. Ren, J.-P. Fleurial, and P. Gogna, "New Directions for Low-Dimensional Thermoelectric Materials," Adv. Mater., 19 [8] 1043-53 (2007). https://doi.org/10.1002/adma.200600527
  10. B. C. Sales, "Electron Crystals and Phonon Glasses: A New Path to Improved Thermoelectric Materials," MRS Bull., 23 [1] 15-21 (1998).
  11. D.-K. Ko, Y. Kang, and C. B. Murray, "Enhanced Thermopower via Carrier Energy Filtering in Solution-Processable Pt-$Sb_2Te_3$ Nanocomposites," Nano Lett., 11 [7] 2841-44 (2011). https://doi.org/10.1021/nl2012246
  12. D. L. Medlin and G. J. Snyder, "Interfaces in Bulk Thermoelectric Materials: A Review for Current Opinion in Colloid and Interface Science," Curr. Opin. Colloid Interface Sci., 14 [4] 226-35 (2009). https://doi.org/10.1016/j.cocis.2009.05.001
  13. S. R. S. Kumar, N. Kurra, and H. N. Alshareef, "Enhanced High Temperature Thermoelectric Response of Sulphuric Acid Treated Conducting Polymer Thin Films," J. Mater. Chem. C, 4 [1] 215-21 (2016). https://doi.org/10.1039/C5TC03145A
  14. Q. Zhang, Y. Sun, W. Xu, and D. Zhu, "Organic Thermoelectric Materials: Emerging Green Energy Materials Converting Heat to Electricity Directly and Efficiently," Adv. Mater., 26 [40] 6829-51 (2014). https://doi.org/10.1002/adma.201305371
  15. Y. Sun, L. Qiu, L. Tang, H. Geng, H. Wang, F. Zhang, D. Huang, W. Xu, P. Yue, Y.-S. Guan, F. Jiao, Y. Sun, D. Tang, C.-A. Di, Y. Yi, and D. Zhu, "Flexible n-Type High-Performance Thermoelectric Thin Films of Poly(nickelethylenetetrathiolate) Prepared by an Electrochemical Method," Adv. Mater., 28 [17] 3351-58 (2016). https://doi.org/10.1002/adma.201505922
  16. Y. Du, S. Z. Shen, K. Cai, and P. S. Casey, "Research Progress on Polymer-Inorganic Thermoelectric Nanocomposite Materials," Prog. Polym. Sci., 37 [6] 820-41 (2012). https://doi.org/10.1016/j.progpolymsci.2011.11.003
  17. C. Gayner and K. K. Kar, "Recent Advances in Thermoelectric Materials," Prog. Mater. Sci., 83 330-82 (2016). https://doi.org/10.1016/j.pmatsci.2016.07.002
  18. O. Bubnova, Z. U. Khan, A. Malti, S. Braun, M. Fahlman, M. Berggren, and X. Crispin, "Optimization of the Thermoelectric Figure of Merit in the Conducting Polymer Poly(3,4-ethylenedioxythiophene)," Nat. Mater., 10 [6] 429-33 (2011). https://doi.org/10.1038/nmat3012
  19. G. H. Kim, L. Shao, K. Zhang, and K. P. Pipe, "Engineered Doping of Organic Semiconductors for Enhanced Thermoelectric Efficiency," Nat. Mater., 12 [8] 719-23 (2013). https://doi.org/10.1038/nmat3635
  20. Q. Wang, Q. Yao, J. Chang, and L. Chen, "Enhanced Thermoelectric Properties of CNT/PANI Composite Nanofibers by Highly Orienting the Arrangement of Polymer Chains," J. Mater. Chem., 22 [34] 17612-18 (2012). https://doi.org/10.1039/c2jm32750c
  21. B. Cho, K. S. Park, J. Baek, H. S. Oh, Y. E. K. Lee, and M. M. Sung, "Single-Crystal Poly(3,4-ethylenedioxythiophene) Nanowires with Ultrahigh Conductivity," Nano Lett., 14 [6] 3321-27 (2014). https://doi.org/10.1021/nl500748y
  22. G. Lu, C. Li, J. Shen, Z. Chen, and G. Shi, "Preparation of Highly Conductive Gold-Poly(3,4-ethylenedioxythiophene) Nanocables and Their Conversion to Poly(3,4-ethylenedioxythiophene) Nanotubes," J. Phys. Chem. C, 111 [16] 5926-31 (2007). https://doi.org/10.1021/jp070387t
  23. Y. Wang, K. Cai, and X. Yao, "Facile Fabrication and Thermoelectric Properties of PbTe-Modified Poly(3,4-ethylenedioxythiophene) Nanotubes," ACS Appl. Mater. Interfaces, 3 [4] 1163-66 (2011). https://doi.org/10.1021/am101287w
  24. K. C. See, J. P. Feser, C. E. Chen, A. Majumdar, J. J. Urban, and R. A. Segalman, "Water-Processable Polymer-Nanocrystal Hybrids for Thermoelectrics," Nano Lett., 10 [11] 4664-67 (2010). https://doi.org/10.1021/nl102880k
  25. S. K. Yee, N. E. Coates, A. Majumdar, J. J. Urban, and R. A. Segalman, "Thermoelectric Power Factor Optimization in PEDOT:PSS Tellurium Nanowire Hybrid Composites," Phys. Chem. Chem. Phys., 15 [11] 4024-32 (2013). https://doi.org/10.1039/c3cp44558e
  26. Y. Du, K. F. Cai, S. Chen, P. Cizek, and T. Lin, "Facile Preparation and Thermoelectric Properties of $Bi_2Te_3$ Based Alloy Nanosheet/PEDOT:PSS Composite Films," ACS Appl. Mater. Interfaces, 6 [8] 5735-43 (2014). https://doi.org/10.1021/am5002772
  27. H. Ju and J. Kim, "Fabrication of Conductive Polymer/Inorganic Nanoparticles Composite Films: PEDOT:PSS with Exfoliated Tin Selenide Nanosheets for Polymer-Based Thermoelectric Devices," Chem. Eng. J., 297 66-73 (2016). https://doi.org/10.1016/j.cej.2016.03.137
  28. J. Choi, J. Y. Lee, S. S. Lee, C. R. Park, and H. Kim, "High-Performance Thermoelectric Paper Based on Double Carrier-Filtering Processes at Nanowire Heterojunctions," Adv. Energy Mater., 6 [9] 1502181 (2016). https://doi.org/10.1002/aenm.201502181

피인용 문헌

  1. An Overview of Self-Grown Nanostructured Electrode Materials in Electrochemical Supercapacitors vol.55, pp.5, 2018, https://doi.org/10.4191/kcers.2018.55.5.01
  2. Thermoelectric Properties in Bi2Te3/Poly(3,4-Ethylenedioxythiophene): Poly(4-Styrenesulfonate) Composites vol.24, pp.1, 2021, https://doi.org/10.31613/ceramist.2021.24.1.08