DOI QR코드

DOI QR Code

자성에 의해 분리 가능한 메조포러스 카본의 소프트 주형 합성

Soft-template Synthesis of Magnetically Separable Mesoporous Carbon

  • Park, Sung Soo (Department of Polymer Science and Enhineering, Pusan National University) ;
  • Ha, Chang-Sik (Department of Polymer Science and Enhineering, Pusan National University)
  • 투고 : 2017.05.03
  • 심사 : 2017.06.23
  • 발행 : 2017.06.30

초록

본 연구에서는 잘 배열된 나노세공 구조와 자성체 나노입자를 포함하는 메조포러스 카본(Carbonized Ni-FDU-15)을 합성하였다. Carbonized Ni-FDU-15는 구조형성 주형으로 트리블럭 공중합체(F127)를 이용하고, 카본 세공벽 형성 물질로 resol 전구체를 사용하며 질산 니켈(nickel(II) nitrate)을 금속이온 원으로 사용하여 증발유도 자기조립(Evaporation-Induced Self-Assembly, EISA)과 직접 탄화과정을 거쳐서 합성되었다. 메조포러스 카본은 잘 배열된 이차원적 육방체 구조(2D-hexagonal structure)를 가진다. 한편, 세공벽 내 자성체 나노입자는 니켈(Ni) 금속과 니켈 산화물(NiO)이 생성되었다. 나노입자의 크기는 약 37 nm이었다. 그리고 Carbonized Ni-FDU-15의 표면적, 세공크기, 세공부피는 각각 $558m^2g^{-1}$, $22.5{\AA}$ 그리고 $0.5cm^3g^{-1}$이었다. Carbonized Ni-FDU-15는 외부에서 자력을 가하였을 때 자력이 가해지는 방향으로 이동함을 확인하였다. 이러한 자성체 담지 메조포러스 카본 물질은 흡착/분리, 자기 저장 매체, 자성 유체(ferrofluid), 자기 공명 영상(MRI) 및 약물 타겟팅 등의 광범위한 응용 분야에 높은 응용성을 가질 것으로 기대된다.

In this study, we synthesized mesoporous carbon (Carbonized Ni-FDU-15) containing nanoporous structures and magnetic nanoparticles. Carbonized Ni-FDU-15 was synthesized via evaporation-induced self-assembly (EISA) and direct carbonization by using a triblock copolymer (F127) as a structure-directing agent, a resol precursor as a carbon-pore wall forming material, and nickel (II) nitrate as a metal ion source. The mesoporous carbon has a well-ordered two-dimensional hexagonal structure. Meanwhile, nickel (Ni) metal and nickel oxide (NiO) were produced in the magnetic nanoparticles in the pore wall. The size of the nanoparticles was about 37 nm. The surface area, pore size and pore volume of Carbonized Ni-FDU-15 were $558m^2g^{-1}$, $22.5{\AA}$ and $0.5cm^3g^{-1}$, respectively. Carbonized Ni-FDU-15 was found to move in the direction of magnetic force when magnetic force was externally applied. The magnetic nanoparticle-bearing mesoporous carbons are expected to have high applicability in a wide variety of applications such as adsorption/separation, magnetic storage media, ferrofluid, magnetic resonance imaging (MRI) and drug targeting, etc.

키워드

참고문헌

  1. L. Chen, T. Ji, L. Mu, Y. Shi, L. Brisbin, Z. Guo, M. A. Khan, D. P. Young, and J. Zhu, RSC Adv., 6, 2259 (2016). https://doi.org/10.1039/C5RA19616G
  2. Z. Sun, B. Sun, M. Qiao, J. Wei, Q. Yue, C. Wang, Y. Deng, S. Kaliaguine, and D. Zhao, J. Am. Chem. Soc., 134, 17653 (2012). https://doi.org/10.1021/ja306913x
  3. Y. Mao, H. Duan, B. Xu, L. Zhang, Y. Hu, C. Zhao, Z. Wang, L. Chen, and Y. Yang, Energy Environ. Sci. 5, 7950 (2012). https://doi.org/10.1039/c2ee21817h
  4. M. Gisbert-Garzaran, M. Manzano, M. Vallet-Regi, Bioengineering, 4(3), 1 (2017). https://doi.org/10.3390/bioengineering4010001
  5. R. Ryoo, S. H. Joo, M. Kruk, and M. Jaroniec, Adv. Mater., 13, 677 (2001). https://doi.org/10.1002/1521-4095(200105)13:9<677::AID-ADMA677>3.0.CO;2-C
  6. Y. Zhai, Y. Dou, X. Liu, S. S. Park, C.-S. Ha, and D. Zhao, Carbon, 49, 545 (2011). https://doi.org/10.1016/j.carbon.2010.09.055
  7. T. Hyeon, Chem. Commun., 927, 8 (2003).
  8. S. Chikazumi, S. Taketomi, M. Ukita, M. Mizukami, H. Miyajima, M. Setogawa, and Y. Kurihara, J. Magnet. Magnet. Mater., 65, 245 (1987). https://doi.org/10.1016/0304-8853(87)90043-6
  9. Z. Li, L. Wei, M. Y. Gao, and H. Lei, Adv. Mater., 17, 1001 (2005). https://doi.org/10.1002/adma.200401545
  10. F. Dong, W. Guo, J.-H. Bae, S.-H. Kim, and C.-S. Ha, Chem. Eur. J., 17, 12802 (2011). https://doi.org/10.1002/chem.201101110
  11. I. S. Park, M. Choi, T. W. Kim, and R. Ryoo, J. Mater. Chem., 16, 3409 (2006). https://doi.org/10.1039/b604228g
  12. A. H. Lu, W. Schmidt, N. Matoussevitch, H. Bonnemann, B. Spliethoff, B. Tesche, E. Bill, W. Kiefer, and F. Schuth, Angew. Chem. Int. Ed. 43, 4303 (2004). https://doi.org/10.1002/anie.200454222
  13. G. Cheng, M.-D. Zhou, and S.-Y. Zheng, ACS Appl. Mater. Interfaces, 6, 12719 (2014). https://doi.org/10.1021/am502712a
  14. S. Xue, C. Wang, and Y. Wei, RSC Adv., 7, 11921 (2017). https://doi.org/10.1039/C7RA00523G
  15. D. Yamaguchi, K. Furukawa, M. Takasuga, and K. Watanabe, Sci. Rep., 4, Article No. 6053 (2014).
  16. D. Yamaguchi, K. Watanabe, and S. Fukumi, Sci. Rep., 6, Article No. 20327 (2016).
  17. Y. Zhai, Y. Dou, X. Liu, B. Tu, and D. Zhao, J. Mater. Chem., 19, 3292 (2009). https://doi.org/10.1039/b821945a
  18. S. S. Park, D. Zhao, and C.-S. Ha, Adv. Porous Mater., 1(4), 354 (2013). https://doi.org/10.1166/apm.2013.1032
  19. S. S. Park and C.-S. Ha, J. Adhes. Interface, 14(2), 82 (2013). https://doi.org/10.17702/jai.2013.14.2.082
  20. M. I. Din and A. Rani, Int. J. Anal. Chem., 2016, Article ID 3512145 (2016).
  21. A. Garcia, A. Nieto, M. Vila, and M. Vallet-Regi, Carbon, 51, 410 (2013). https://doi.org/10.1016/j.carbon.2012.08.074
  22. K. Lee, H. Song, K. H. Lee, S. H. Choi, J. H. Jang, K. Char, and J. G. Son, ACS Appl. Mater. Interfaces, 8, 22516 (2016). https://doi.org/10.1021/acsami.6b06611
  23. Y. Meng, D. Gu, F. Zhang, Y. Shi, L. Cheng, D. Feng, Z. Wu, Z. Chen, Y. Wan, A. Stein, and D. Zhao, Chem. Mater., 18, 4447 (2006). https://doi.org/10.1021/cm060921u
  24. S. S. Park, M. S. Moorthy, H.-J. Song, and C.-S. Ha, J. Nanosci. Nanotechnol., 14(11), 8845 (2014). https://doi.org/10.1166/jnn.2014.9956