DOI QR코드

DOI QR Code

A Design of Temperature-Compensating Ethernet Equalizer for Reliable Automotive Sensor Communication

차량 내 신뢰성 있는 센서 (Sensor) 통신을 위한 온도보상 기반 이더넷 이퀄라이저 (Ethernet equalizer) 설계

  • Seo, Seoktae (The school of electrical and computer engineering, Ulsan National Institute of Science and Technology) ;
  • Bien, Franklin (The school of electrical and computer engineering, Ulsan National Institute of Science and Technology)
  • 서석태 (울산과학기술원 전기전자공학과) ;
  • 변영재 (울산과학기술원 전기전자공학과)
  • Received : 2017.05.24
  • Accepted : 2017.06.20
  • Published : 2017.07.25

Abstract

In this paper, an Ethernet equalizer that compensates for automotive temperature variations within a broad range is presented. Communications in automotive systems have become increasingly important because of the many electronics in vehicles. Ethernet protocols are a good candidate for automotive communications. However, they should satisfy the AEC-Q100 requirements that stipulate an operational temperature range from -40 to $150^{\circ}C$. This paper proposes an Ethernet equalizer that can recover data up until 100 m length of CAT-5 cable adaptively within a temperature range of -40 to $150^{\circ}C$. To support the wide temperature range, a feedback system is used. The proposed equalizer has a bandwidth of 31.25 MHz with a fully-differential structure and is implemented in a Hynix $0.13{\mu}m$ BCDMOS technology.

본 논문에서는 넓은 작동 온도 범위를 위해 온도보상기능을 가지는 이더넷 이퀄라이저를 소개한다. 차량 내부에 서로 통신하는 센서가 많아지면서, 차량용 통신에 대한 중요성이 높아진다. 많은 통신 방법 중에 이더넷 프로토콜은 넓은 통신 대역폭과 호환성을 가지기 때문에 차량용 통신을 위해 가장 선호되는 기술이다. 그러나 차량용 규격인 AEC-Q100을 만족시키기 위해서 제안하는 이더넷 통신 시스템은 $-40^{\circ}C$에서 $150^{\circ}C$에 해당하는 온도 범위에서 작동해야한다. 본 논문에서는 100m길이의 CAT-5 케이블에서 데이터를 보상하는 이더넷 이퀄라이저를 설계한다. 또한, 넓은 온도 범위에서 작동하기 위해 피드백 시스템을 이용한다. 제안하는 이퀄라이저는 완전 차동형 구조로 31.25MHz의 대역폭을 가지고 Hynix $0.13{\mu}m$ BCDMOS 기술로 구현한다.

Keywords

References

  1. H. Lajmi, A. M. Alimi, S. Ajili, "Using ethernet technology for in-vehicle's network analysis," Computational Intelligence Communication Systems and Networks (CICSvN), pp. 353-358, Madrid, Spain, June 2013.
  2. M. Ruff, "Evolution of local interconnect network (LIN) solution," 2003 IEEE 58th Vehicular Technology Conference. VTC 2003-Fall (IEEE Cat. No. 03CH37484), pp. 3382-3389 Vol. 5., Orlando, FL, USA, Oct 2003,
  3. M. Farsi, K. Ratcliff and M. Barbosa, "An overview of controller area network," in Computing & Control Engineering Journal, vol. 10, no. 3, pp. 113-120, June 1999. https://doi.org/10.1049/cce:19990304
  4. R. Makowitz and C. Temple, "Flexray - A communication network for automotive control systems," 2006 IEEE International Workshop on Factory Communication Systems, pp. 207-212, Torino, Italy, 2006.
  5. MOST Cooperation. (2004, August) MOST Specification Revision 2.3. [Online]. Available: http://www.mostnet.de
  6. T. Steinbach, F. Korf and T. C. Schmidt, "Real-time Ethernet for automotive applications: A solution for future in-car networks," 2011 IEEE International Conference on Consumer Electronics -Berlin (ICCE-Berlin), pp. 216-220, Berlin, Germany, 2011.
  7. J. Everitt, J. F. Parker, P. Hㅂurst, D. Nack, K. Rao Konda, "A CMOS transceiver for 10-Mb/s and 100-Mb/s Ethernet," Solid-State Circuits Vol. 33, No. 12, pp. 2169-2177, Dec 1998. https://doi.org/10.1109/4.735701
  8. Robert. F. P.: 'Semiconductor device fundamentals second edition', Addison-Wesley Publishing company, pp. 79-84, 1996.
  9. J. Singh, G. Wadhwa, "MOSFET mobility model at nanoscale including temperature effects," in International Conference on Computer Research and Development ICCRD, Vol. 3, pp. 325-330, Shanghai, China, 2011.
  10. H. Goncalves, J. Fernandes, M. Martins, "A study on MOSFET rectifiers maximum output voltage for RF power harvesting circuits," pp. 2964-2967, in International Symposium on Circuits and Systems ISCAS, Beijing, China, 2013.
  11. P. C. Huang, L.-Y. Chiou, C.-K. Wang, "A 3.3-V CMOS wideband exponential control variable-gain-amplifier," in ISCAS, Vol. 1, pp. 285-288, Monterey, CA, USA, 1998.
  12. S.-H. Park, J.-H. Lee, S.-W. Kim, S.-K. Choi, C.-H. Kim, M.-U. Seong, S.-G. Kim, and J.-Y. Ryu, "A new low-power programmable CMOS gain amplifier," CES-CUBE, Vol. 25, pp. 77-80, Guam, USA, 2013
  13. A. Monpapassorn, "High frequency/low voltage CMOS adder," Thammasat International Journal of Scinece Technology, Vol. 5, No. 2, pp. 48-52, 2000.