참고문헌
- Lanhe, W., "Thermal Buckling of a Simply Supported Moderately Thick Rectangular FGM Plate", Composite Structures, Vol. 64, No. 2, 2004, pp. 211-218. DOI:10.1016/j. compstruct.2003.08.004
- Ebrahimi, F. and Rastgo, A., "An Analytical Study on the Free Vibration of Smart Circular Thin FGM Plate Based on Classical Plate Theory", Thin-Walled Structures, Vol. 46, No. 12, 2008, pp. 1402-1408. DOI:10.1016/j.tws.2008.03.008
- Ke, L. L., Yang, J., Kitipornchai, S. and Xiang, Y., "Flexural Vibration and Elastic Buckling of a Cracked Timoshenko Beam Made of Functionally Graded Materials", Mechanics of Advanced Materials and Structures, Vol. 16, No. 6, 2009, pp. 488-502. DOI:10.1080/15376490902781175
- Zhang, D. G., "Nonlinear Bending Analysis of FGM Beams Based on Physical Neutral Surface and High Order Shear Deformation Theory", Composite Structures, Vol. 100, 2013, pp. 121-126. DOI:10.1016/j.compstruct.2012.12.024
- Pradhan, K. K. and Chakraverty, S., "Free Vibration of Euler and Timoshenko Functionally Graded Beams by Rayleigh-Ritz Method", Composites Part B: Engineering, Vol. 51, 2013, pp. 175-184. DOI:10.1016/j. compositesb.2013.02.027
- Esfahani, S. E., Kiani, Y., Komijani, M. and Eslami, M. R., "Vibration of a Temperature-dependent Thermally Pre/ postbuckled FGM Beam over a Nonlinear Hardening Elastic Foundation", Journal of Applied Mechanics, Vol. 81, No. 1, 2014, 011004. DOI:10.1115/1.4023975
- Wattanasakulpong, N. and Chaikittiratana, A., "Flexural Vibration of Imperfect Functionally Graded Beams Based on Timoshenko Beam Theory: Chebyshev Collocation Method", Meccanica, Vol. 50, No. 5, 2015, pp. 1331-1342. DOI:10.1007/ s11012-014-0094-8
- Aydogdu, M., "A General Nonlocal Beam Theory: its Application to Nanobeam Bending, Buckling and Vibration", Physica E: Low-dimensional Systems and Nanostructures, Vol. 41, No. 9, 2009, pp. 1651-1655. DOI:10.1016/j. physe.2009.05.014
- Thai, H. T., "A Nonlocal Beam Theory for Bending, Buckling, and Vibration of Nanobeams", International Journal of Engineering Science, Vol. 52, 2012, pp. 56-64. DOI:10.1016/j.ijengsci.2011.11.011
- Yan, Z. and Jiang, L., "Size-dependent Bending and Vibration Behaviour of Piezoelectric Nanobeams due to Flexoelectricity", Journal of Physics D: Applied Physics, Vol. 46, No. 35, 2013, 355502. DOI:10.1088/0022-3727/46/35/355502
- Ke, L. L., Wang, Y, S,, Yang, J. and Kitipornchai, S., "Nonlinear Free Vibration of Size-dependent Functionally Graded Microbeams", International Journal of Engineering Science, Vol. 50, No. 1, 2012, pp. 256-267. DOI:10.1016/j. ijengsci.2010.12.008
- Ansari, R., Shojaei, M. F., Gholami, R., Mohammadi, V. and Darabi, M. A., "Thermal Postbuckling Behavior of Sizedependent Functionally Graded Timoshenko Microbeams", International Journal of Non-Linear Mechanics, Vol. 50, 2013, pp. 127-135. DOI:10.1016/j.ijnonlinmec.2012.10.010
- Eltaher, M. A., Emam, S. A. and Mahmoud, F. F., "Static and Stability Analysis of Nonlocal Functionally Graded Nanobeams", Composite Structures, Vol. 96, 2013, pp. 82-88. DOI:10.1016/j.compstruct.2012.09.030
- Simsek, M. and Yurtcu, H. H., "Analytical Solutions for Bending and Buckling of Functionally Graded Nanobeams Based on the Nonlocal Timoshenko Beam Theory", Composite Structures, Vol. 97, 2013, pp. 378-386. DOI:10.1016/j. compstruct.2012.10.038
- Sharabiani, P. A. and Yazdi, M. R. H., "Nonlinear Free Vibrations of Functionally Graded Nanobeams with Surface Effects", Composites Part B: Engineering, Vol. 45, No. 1, 2013, pp. 581-586. DOI:10.1016/j.compositesb.2012.04.064
- Uymaz, B., "Forced Vibration Analysis of Functionally Graded Beams Using Nonlocal Elasticity", Composite Structures, Vol. 105, 2013, pp. 227-239. DOI:10.1016/j. compstruct.2013.05.006
- Rahmani, O. and Pedram, O., "Analysis and Modeling the Size Effect on Vibration of Functionally Graded Nanobeams Based on Nonlocal Timoshenko Beam Theory", International Journal of Engineering Science, Vol. 77, 2014, pp. 55-70. DOI:10.1016/j.ijengsci.2013.12.003
- Zenkour, A. M. and Abouelregal, A. E., "Vibration of FG Nanobeams Induced by Sinusoidal Pulse-heating via a Nonlocal Thermoelastic Model", Acta Mechanica, Vol. 225, No. 12, 2014, pp. 3409-3421. DOI:10.1007/s00707-014-1146-9
- Ebrahimi, F., Ghadiri, M., Salari, E., Hoseini, S. A. H. and Shaghaghi, G. R. "Application of the Differential Transformation Method for Nonlocal Vibration Analysis of Functionally Graded Nanobeams", Journal of Mechanical Science and Technology, Vol. 29, 2015, pp. 1207-1215. DOI:10.1007/s12206-015-0234-7
- Ebrahimi, F. and Salari, E., "A Semi-analytical Method for Vibrational and Buckling Analysis of Functionally Graded Nanobeams Considering the Physical Neutral Axis Position", CMES: Computer Modeling in Engineering & Sciences, Vol. 105, 2015, pp. 151-181. DOI:10.3970/cmes.2015.105.151
- Zenkour, A. M. and Abouelregal, A. E., "Thermoelastic Interaction in Functionally Graded Nanobeams Subjected to Time-dependent heat Flux", Steel and Composite Structures, Vol. 18, No. 4, 2015, pp. 909-924. DOI: 10.12989/ scs.2015.18.4.909
- Ansari, R., Pourashraf, T. and Gholami, R., "An Exact Solution for the Nonlinear Forced Vibration of Functionally Graded Nanobeams in Thermal Environment Based on Surface Elasticity Theory", Thin-Walled Structures, Vol. 93, 2015, pp. 169-176. DOI:10.1016/j.tws.2015.03.013
- Rahmani, O. and Jandaghian, A. A., "Buckling Analysis of Functionally Graded Nanobeams Based on a Nonlocal Third-order Shear Deformation Theory", Applied Physics A, Vol. 119, 2015, pp. 1019-1032. DOI:10.1007/s00339-015- 9061-z
- Ebrahimi, F. and Salari, E., "Thermal Buckling and Free Vibration Analysis of Size Dependent Timoshenko FG Nanobeams in Thermal Environments", Composite Structures, Vol. 128, 2015, pp. 363-380. DOI:10.1016/j. compstruct.2015.03.023
- Zenkour, A. M. and Sobhy, M., "A Simplified Shear and Normal Deformations Nonlocal Theory for Bending of Nanobeams in Thermal Environment", Physica E, Vol. 70, 2015, pp. 121-128. DOI:10.1016/j.physe.2015.02.022
- Mashat, D. S., Zenkour, A. M. and Sobhy, M., "Investigation of Vibration and Thermal Buckling of Nanobeams Embedded in an Elastic Medium Under Various Boundary Conditions", Journal of Mechanics, Vol. 32, No. 3, 2016, pp. 277-287. DOI:10.1017/jmech.2015.83
- Doroushi, A., Eslami, M. R. and Komeili, A. "Vibration Analysis and Transient Response of an FGPM Beam Under Thermo-electro-mechanical Loads Using Higherorder Shear Deformation Theory", Journal of Intelligent Material Systems and Structures, Vol. 22, 2011, pp. 231-243. DOI:10.1177/1045389X11398162
- Kiani, Y., Rezaei, M., Taheri, S. and Eslami, M. R., "Thermo-electrical Buckling of Piezoelectric Functionally Graded Material Timoshenko Beams", International Journal of Mechanics and Materials in Design, Vol. 7, 2011, pp. 185-197. DOI:10.1007/s10999-011-9158-2
- Komijani, M., Kiani, Y., Esfahani, S. E. and Eslami, M. R., "Vibration of Thermo-electrically Postbuckled Rrectangular Functionally Graded Piezoelectric Beams", Composite Structures, Vol. 98, 2013, pp. 143-152. DOI:10.1016/j.compstruct.2012.10.047
- Lezgy-Nazargah, M., Vidal, P. and Polit, O., "An Efficient Finite Element Model for Static and Dynamic Analyses of Functionally Graded Piezoelectric Beams", Composite Structures, Vol. 104, 2013, pp. 71-84. DOI:10.1016/j. compstruct.2013.04.010
- Shegokar, N. L. and Lal, A., "Stochastic Finite Element Nonlinear Free Vibration Analysis of Piezoelectric Functionally Graded Materials Beam Subjected to Thermopiezoelectric Loadings with Material Uncertainties", Meccanica, Vol. 49, No. 5, 2014, pp. 1039-1068. DOI:10.1007/ s11012-013-9852-2
- Touratier, M., "An Efficient Standard Plate Theory", International Journal of Engineering Science, Vol. 29, 1991, pp. 901-916. DOI:10.1016/0020-7225(91)90165-Y
- Soldatos, K. P., "A Transverse Shear Deformation Theory for Homogeneous Monoclinic Plates", Acta Mechanica, Vol. 94, No. 3-4, 1992, pp. 195-220. DOI:10.1007/ BF01176650
- Reddy, J. N., "Nonlocal Theories for Bending, Buckling and Vibration of Beams", International Journal of Engineering Science, Vol. 45, No. 2, 2007, pp. 288-307. DOI:10.1016/j. ijengsci.2007.04.004
- Eringen, A. C. and Edelen, D. G. B., "On Nonlocal Elasticity", International Journal of Engineering Science, Vol. 10, No. 3, 1972, pp. 233-248. DOI:10.1016/0020- 7225(72)90039-0
- Eringen, A. C., "Nonlocal Polar Elastic Continua", International Journal of Engineering Science, Vol. 10, No. 1, 1972, pp. 1-16. DOI:10.1016/0020-7225(72)90070-5
- Eringen, A. C., "On Differential Equations of Nonlocal Elasticity and Solutions of Screw Dislocation and Surface Waves", Journal of Applied Physics, Vol. 54, No. 9, 1983, pp. 4703-4710. DOI:10.1063/1.332803
피인용 문헌
- On wave dispersion characteristics of double-layered graphene sheets in thermal environments vol.32, pp.15, 2018, https://doi.org/10.1080/09205071.2017.1417918
- Modelling of thermally affected elastic wave propagation within rotating Mori–Tanaka-based heterogeneous nanostructures vol.24, pp.6, 2018, https://doi.org/10.1007/s00542-018-3800-y