DOI QR코드

DOI QR Code

레이저 분광법을 활용한 토양 2차원 화학적 분포도 검출 연구

The Study of Two-dimensional Chemical Distribution about Soil using Laser Spectroscopy

  • Yang, Jun-Ho (Department of Mechanical and Aerospace Engineering, Seoul National University) ;
  • Yoh, Jai-Ick (Department of Mechanical and Aerospace Engineering, Seoul National University)
  • 투고 : 2016.11.28
  • 심사 : 2017.05.31
  • 발행 : 2017.06.01

초록

높은 에너지의 레이저가 조사되면 레이저 삭마 현상을 일으키고, 결과적으로 플라즈마가 물질에 따라 특정한 파장의 빛을 방출하는 레이저 유도 파괴 분광법(LIBS, Laser-Induced Breakdown Spectroscopy)과 빛은 산란 현상에 대해 분자 간 혹은 분자 내의 회전 및 진동 운동을 측정하는 라만 분광법은 높은 정확도와 실시간 분석이 가능하다는 점, 원거리 검출이 가능하다는 장점들을 기반으로 우주 탐사 기술로써 주목을 받고 있다. 본 연구에서는 레이저 분광법을 활용하여 토양 성분의 변화에 따른 레이저 스펙트럼의 경향성을 파악하고, 이를 기반으로 2차원 화학적 분포도 실험을 진행하였다. 또한 화성(4-7 torr)과 달의 대기(<1 torr) 환경을 레이저 실험 환경 내에 구축하여 인공적인 우주 환경에서 LIBS와 라만 분광법을 활용하여 토양 성분의 변화에 따른 LIBS와 라만 분광법을 통한 계측이 가능함을 증명하였다.

Laser-Induced Breakdown Spectroscopy (LIBS) which a plasma is irradiated at a specific wavelength depending on the material when a high-energy laser is irradiated, and a Raman spectroscopy which measures rotation and vibration in molecules as light-scattering phenomenon occurs, are attracting attention as a space exploration technology because of the advantages of high accuracy and real-time analysis, and the ability to perform long-range detection. In this study, the tendency of the laser spectrum according to the change of the soil component was analyzed by laser spectroscopy and the two - dimensional chemical distribution was conducted based on the trend of laser spectrum. We have also established the environment of Mars (4-7 torr) and lunar atmosphere (<1 torr) in experimental setup, to prove that it is possible to measure by difference of soil chemical composition using LIBS and Raman spectroscopy even in artificial space environment.

키워드

참고문헌

  1. Leon J Radziemski "From LASER to LIBS, the path of technology development", Spectrochemica Acta Part B: Atomic Spectroscopy, Vol.57, Issue 7. 2002.
  2. David W. Hahn, and Nicolo Omenetto "Laser-Induced Breakdown Spectroscopy(LIBS), part I: Review of Basic Diagonostics and Plasma-Particle Interactions: Still-Challenging Issues Within the Analytical Plasma Community", Applied Spectroscopy, Vol.64, Issue 12. 2010.
  3. David W. Hahn, and Nicolo Omenetto "Laser-Induced Breakdown Spectroscopy(LIBS), part II: Review of instrumental and Methodological Approaches to Material Analysis and Applications to Different Fields", Applied Spectroscopy, Vol.66, No 4. 2012.
  4. Soo-Jin Choi, and Jai-ick Yoh, "Precision exploration of spce resources using laser-induced breakdown spectroscopy", Journal of Korean Society for Aeronautical and Space Sciences, Vol.39, No 5. 2011.
  5. Kang-Jae Lee, Soo-Jin Choi, and Jack J. Yoh, "Stand-off lase-induced breakdown spectroscopy of aluminum and geochemical reference materials at pressure below 1 torr". Spectrochemica Acta Part B, Vol. 101, 2014, 335-341. https://doi.org/10.1016/j.sab.2014.06.009
  6. G. B. Courreges-Lacoste, Berit Ahlers, and Fernando Rull Perez, "Combined Raman spectrometer/laser-induced breakdown spectrometer for the next ESA mission to MArs", spectrochemica Acta Part A: Atomic Spectroscopy, Vol.68, 2007.
  7. Alian Wang, Brandley L. Jolliff, and Larry A. Haskin, "Raman spectroscopy for a method for mineral identification on lunar robotic exploration missions", Journal of geophysical research, Vol 100, 1995
  8. Javier Moros and Jose Javier Laserna, "New-Raman-Laser-Induced Breakdown Spectroscopy Identity of Explosives Using Parametric Data Fusion on an Integrated Sensing Platform", analytical chemistry, Vol 83, 2011, 6275-6285. https://doi.org/10.1021/ac2009433