DOI QR코드

DOI QR Code

A Markov Approximation-Based Approach for Network Service Chain Embedding

Markov Approximation 프레임워크 기반 네트워크 서비스 체인 임베딩 기법 연구

  • Received : 2017.01.23
  • Accepted : 2017.04.24
  • Published : 2017.07.15

Abstract

To reduce management costs and improve performance, the European Telecommunication Standards Institute (ETSI) introduced the concept of network function virtualization (NFV), which can implement network functions (NFs) on cloud/datacenters. Within the NFV architecture, NFs can share physical resources by hosting NFs on physical nodes (commodity servers). For network service providers who support NFV architectures, an efficient resource allocation method finds utility in being able to reduce operating expenses (OPEX) and capital expenses (CAPEX). Thus, in this paper, we analyzed the network service chain embedding problem via an optimization formulation and found a close-optimal solution based on the Markov approximation framework. Our simulation results show that our approach could increases on average CPU utilization by up to 73% and link utilization up to 53%.

약 네트워크의 관리 비용을 줄이고 성능을 향상시키기 위해 ETSI(European Telecommunication Standards Institute)는 클라우드 데이터 센터에서 네트워크 기능(Network Function)을 소프트웨어 형태로 구현할 수 있는 네트워크 기능 가상화(Network Function Virtualization) 개념을 도입했다. 네트워크 기능 가상화 구조 내에서 네트워크 기능을 물리적 노드(예: 범용 서버)에 네트워크 기능을 호스팅하여 실제 리소스를 공유할 수 있다. 네트워크 기능 가상화를 지원하는 네트워크 서비스 제공 업체의 경우, 효율적인 자원 할당 방법을 통해 운영비용(OPEX) 및 자본 비용(CAPEX)를 줄일 수 있다. 이에 본 논문에서는 최적화 방법을 통해 Network Service Chain Embedding 문제를 분석하고 Markov Approximation 프레임워크 기반 최적의 솔루션을 제안한다. 제안사항에 대한 시뮬레이션 결과는 평균 CPU 사용률이 73%, 링크 사용률이 최대 53% 증가함을 보여준다.

Keywords

Acknowledgement

Grant : Resilient/Fault-Tolerant Autonomic Networking Based on Physicality, Relationship and Service Semantic of IoT Devices

Supported by : Institute for Information & communications Technology Promotion(IITP)

References

  1. ETSI ISG NFV (Operator Group), "Network functions virtualisation Network operator perspectives on industry progress," White Paper, Oct. 2013.
  2. P. Quinn and T. Nadeau, "Service Function Chaining Problem Statement," Active Internet-Draft, IETF Secretariat, Apr. 2014.
  3. H. Jamjoom, D. Williams, and U. Sharma, "Don't Call Them Middleboxes, Call Them Middlepipes," Proc. of the Third Workshop on Hot Topics in Software Defined Networking, ser. HotSDN '14. New York, NY, USA: ACM, pp. 19-24, 2014.
  4. R. Mijumbi et al., "Network function virtualization: State-of-the-art and research challenges," IEEE Commun. Surveys Tuts., Vol. 18, No. 1, pp. 236-262, 1st Quart. 2016. https://doi.org/10.1109/COMST.2015.2477041
  5. S. Clayman, E. Maini, A. Galis, A. Manzalini, and N. Mazzocca, "The dynamic placement of virtual network functions," Proc. IEEE NOMS, Krakow, Poland, pp. 1-9, May 2014.
  6. M. Xia, M. Shirazipour, Y. Zhang, H. Green, and A. Takacs, "Network function placement for NFV chaining in packet/optical datacenters," J. Lightw. Technol., Vol. 33, No. 8, pp. 1565-1570, Apr. 15, 2015. https://doi.org/10.1109/JLT.2015.2388585
  7. Chuan Pham, Nguyen H. Tran, Cuong T. Do, Eui-Nam Huh, and Choong Seon Hong, "Joint Consolidation and Service-Aware Load Balancing for Datacenters," IEEE Communications Letters, Vol. 20, No. 2, pp. 292-295, Feb. 2016. https://doi.org/10.1109/LCOMM.2015.2501402
  8. Chuan Pham, Nguyen H. Tran, Minh N.H. Nguyen, Shaolei Reny, Walid Saad, Choong Seon Hong, "Hosting Virtual Machines on a Cloud Datacenter: A Matching Theoretic Approach," IEEE/IFIP Network Operations and Management Symposium (NOMS 2016), Istanbul, Turkey, Apr. 25-29, 2016.
  9. Reingold, Edward M., Jurg Nievergelt, and Narsingh Deo, "Combinatorial algorithms," (1977).
  10. Chen, Minghua, et al., "Markov approximation for combinatorial network optimization," IEEE Transactions on Information Theory 59.10 (2013), pp. 6301-6327. https://doi.org/10.1109/TIT.2013.2268923