References
- Nelson, D.R., Koymans, L., Kamataki, T., Stegeman, J.J., Feyereisen, R., Waxman, D.J., Waterman, M.R., Gotoh, O., Coon, M.J., Estabrook, R.W., Gunsalus, I.C. and Nebert, D.W. (1996) P450 superfamily: update on new sequences, gene mapping, accession numbers and nomenclature. Pharmacogenetics, 6, 1-42. https://doi.org/10.1097/00008571-199602000-00002
- Yang, X., Zhang, B., Molony, C., Chudin, E., Hao, K., Zhu, J., Gaedigk, A., Suver, C., Zhong, H., Leeder, J.S., Guengerich, F.P., Strom, S.C., Schuetz, E., Rushmore, T.H., Ulrich, R.G., Slatter, J.G., Schadt, E.E., Kasarskis, A. and Lum, P.Y. (2010) Systematic genetic and genomic analysis of cytochrome P450 enzyme activities in human liver. Genome Res., 20, 1020-1036. https://doi.org/10.1101/gr.103341.109
- Shimada, T. (2017) Inhibition of carcinogen-activating cytochrome P450 enzymes by xenobiotic chemicals in relation to antimutagenicity and anticarcinogenicity. Toxicol. Res., 33, 79-96. https://doi.org/10.5487/TR.2017.33.2.079
- Saini, S., Hirata, H., Majid, S. and Dahiya, R. (2009) Functional significance of cytochrome P450 1B1 in endometrial carcinogenesis. Cancer Res., 69, 7038-7045. https://doi.org/10.1158/0008-5472.CAN-09-1691
-
Delvoux, B., Groothuis, P., D'Hooghe, T., Kyama, C., Dunselman, G. and Romano, A. (2009) Increased production of
$17{\beta}$ -estradiol in endometriosis lesions is the result of impaired metabolism. J. Clin. Endocrinol. Metab., 94, 876-883. https://doi.org/10.1210/jc.2008-2218 - Piotrowska, H., Kucinska, M. and Murias, M. (2013) Expression of CYP1A1, CYP1B1 and MnSOD in a panel of human cancer cell lines. Mol. Cell. Biochem., 383, 95-102. https://doi.org/10.1007/s11010-013-1758-8
- Barnett, J.A., Urbauer, D.L., Murray, G.I., Fuller, G.N. and Heimberger, A.B. (2007) Cytochrome P450 1B1 expression in glial cell tumors: an immunotherapeutic target. Clin. Cancer Res., 13, 3559-3567. https://doi.org/10.1158/1078-0432.CCR-06-2430
-
Akiyama, T. (2000) Wnt/
${\beta}$ -catenin signaling. Cytokine Growth Factor Rev., 11, 273-282. https://doi.org/10.1016/S1359-6101(00)00011-3 -
Clevers, H. (2006) Wnt/
${\beta}$ -catenin signaling in development and disease. Cell, 127, 469-480. https://doi.org/10.1016/j.cell.2006.10.018 - Konigshoff, M. and Eickelberg, O. (2010) WNT signaling in lung disease: a failure or a regeneration signal? Am. J. Respir. Cell Mol. Biol., 42, 21-31. https://doi.org/10.1165/rcmb.2008-0485TR
-
Kim, W., Kim, M. and Jho, E.H. (2013) Wnt/
${\beta}$ -catenin signalling: from plasma membrane to nucleus. Biochem. J., 450, 9-21. https://doi.org/10.1042/BJ20121284 - Lee, J., Li, L., Gretz, N., Gebert, J. and Dihlmann, S. (2012) Absent in Melanoma 2 (AIM2) is an important mediator of interferon-dependent and -independent HLA-DRA and HLADRB gene expression in colorectal cancers. Oncogene, 31, 1242-1253. https://doi.org/10.1038/onc.2011.320
- Narasimhan, J., Wang, M., Fu, Z., Klein, J.M., Haas, A.L. and Kim, J.J. (2005) Crystal structure of the interferon-induced ubiquitin-like protein ISG15. J. Biol. Chem., 280, 27356-27365. https://doi.org/10.1074/jbc.M502814200
- Dastur, A., Beaudenon, S., Kelley, M., Krug, R.M. and Huibregtse, J.M. (2006) Herc5, an interferon-induced HECT E3 enzyme, is required for conjugation of ISG15 in human cells. J. Biol. Chem., 281, 4334-4338. https://doi.org/10.1074/jbc.M512830200
- Shi, H.X., Yang, K., Liu, X., Liu, X.Y., Wei, B., Shan, Y.F., Zhu, L.H. and Wang, C. (2010) Positive regulation of interferon regulatory factor 3 activation by Herc5 via ISG15 modification. Mol. Cell. Biol., 30, 2424-2436. https://doi.org/10.1128/MCB.01466-09
- Skaug, B. and Chen, Z.J. (2010) Emerging role of ISG15 in antiviral immunity. Cell, 143, 187-190. https://doi.org/10.1016/j.cell.2010.09.033
- Durfee, L.A., Lyon, N., Seo, K. and Huibregtse, J.M. (2010) The ISG15 conjugation system broadly targets newly synthesized proteins: implications for the antiviral function of ISG15. Mol. Cell, 38, 722-732. https://doi.org/10.1016/j.molcel.2010.05.002
- Hochrainer, K., Mayer, H., Baranyi, U., Binder, B., Lipp, J. and Kroismayr, R. (2005) The human HERC family of ubiquitin ligases: novel members, genomic organization, expression profiling, and evolutionary aspects. Genomics, 85, 153-164. https://doi.org/10.1016/j.ygeno.2004.10.006
- Cruz, C., Ventura, F., Bartrons, R. and Rosa, J.L. (2001) HERC3 binding to and regulation by ubiquitin. FEBS Lett., 488, 74-80. https://doi.org/10.1016/S0014-5793(00)02371-1
- Wong, J.J., Pung, Y.F., Sze, N.S. and Chin, K.C. (2006) HERC5 is an IFN-induced HECT-type E3 protein ligase that mediates type I IFN-induced ISGylation of protein targets. Proc. Natl. Acad. Sci. U.S.A., 103, 10735-10740. https://doi.org/10.1073/pnas.0600397103
- Kroismayr, R., Baranyi, U., Stehlik, C., Dorfleutner, A., Binder, B.R. and Lipp, J. (2004) HERC5, a HECT E3 ubiquitin ligase tightly regulated in LPS activated endothelial cells. J. Cell Sci., 117, 4749-4756. https://doi.org/10.1242/jcs.01338
-
Liu, C., Kato, Y., Zhang, Z., Do, V.M., Yankner, B.A. and He, X. (1999)
${\beta}$ -Trcp couples${\beta}$ -catenin phosphorylation-degradation and regulates Xenopus axis formation. Proc. Natl. Acad. Sci. U.S.A., 96, 6273-6278. https://doi.org/10.1073/pnas.96.11.6273 -
Lee, J.H., Bae, J.A., Lee, J.H., Seo, Y.W., Kho, D.H., Sun, E.G., Lee, S.E., Cho, S.H., Joo, Y.E., Ahn, K.Y., Chung, I.J. and Kim, K.K. (2010) Glycoprotein 90K, downregulated in advanced colorectal cancer tissues, interacts with CD9/CD82 and suppresses the Wnt/
${\beta}$ -catenin signal via ISGylation of${\beta}$ -catenin. Gut, 59, 907-917. https://doi.org/10.1136/gut.2009.194068 - Gribben, J.G., Ryan, D.P., Boyajian, R., Urban, R.G., Hedley, M.L., Beach, K., Nealon, P., Matulonis, U., Campos, S., Gilligan, T.D., Richardson, P.G., Marshall, B., Neuberg, D. and Nadler, L.M. (2005) Unexpected association between induction of immunity to the universal tumor antigen CYP1B1 and response to next therapy. Clin. Cancer Res., 11, 4430-4436. https://doi.org/10.1158/1078-0432.CCR-04-2111
- Shimada, T., Hayes, C.L., Yamazaki, H., Amin, S., Hecht, S.S., Guengerich, F.P. and Sutter, T.R. (1996) Activation of chemically diverse procarcinogens by human cytochrome P-450 1B1. Cancer Res., 56, 2979-2984.
- Murray, G.I., Taylor, M.C., McFadyen, M.C., McKay, J.A., Greenlee, W.F., Burke, M.D. and Melvin, W.T. (1997) Tumorspecific expression of cytochrome P450 CYP1B1. Cancer Res., 57, 3026-3031.
- Tsuchiya, Y., Nakajima, M., Kyo, S., Kanaya, T., Inoue, M. and Yokoi, T. (2004) Human CYP1B1 is regulated by estradiol via estrogen receptor. Cancer Res., 64, 3119-3125. https://doi.org/10.1158/0008-5472.CAN-04-0166
- Goodin, M.G., Fertuck, K.C., Zacharewski, T.R. and Rosengren, R.J. (2002) Estrogen receptor-mediated actions of polyphenolic catechins in vivo and in vitro. Toxicol. Sci., 69, 354-361. https://doi.org/10.1093/toxsci/69.2.354
- Nakajima, M., Iwanari, M. and Yokoi, T. (2003) Effects of histone deacetylation and DNA methylation on the constitutive and TCDD-inducible expressions of the human CYP1 family in MCF-7 and HeLa cells. Toxicol. Lett., 144, 247-256. https://doi.org/10.1016/S0378-4274(03)00216-9
- Heidel, S.M., Czuprynski, C.J. and Jefcoate, C.R. (1998) Bone marrow stromal cells constitutively express high levels of cytochrome P4501B1 that metabolize 7,12-dimethylbenz[a]anthracene. Mol. Pharmacol., 54, 1000-1006. https://doi.org/10.1124/mol.54.6.1000
- Chun, Y.J. and Kim, S. (2003) Discovery of cytochrome P450 1B1 inhibitors as new promising anti-cancer agents. Med. Res. Rev., 23, 657-668. https://doi.org/10.1002/med.10050
- Chun, Y.J., Lee, S.K. and Kim, M.Y. (2005) Modulation of human cytochrome P450 1B1 expression by 2,4,3',5'-tetramethoxystilbene. Drug Metab. Dispos., 33, 1771-1776.
- Zou, W., Papov, V., Malakhova, O., Kim, K.I., Dao, C., Li, J. and Zhang, D.E. (2005) ISG15 modification of ubiquitin E2 Ubc13 disrupts its ability to form thioester bond with ubiquitin. Biochem. Biophys. Res. Commun., 336, 61-68. https://doi.org/10.1016/j.bbrc.2005.08.038
Cited by
- Volasertib Enhances Sensitivity to TRAIL in Renal Carcinoma Caki Cells through Downregulation of c-FLIP Expression vol.18, pp.12, 2017, https://doi.org/10.3390/ijms18122568
- Angelicin potentiates TRAIL-induced apoptosis in renal carcinoma Caki cells through activation of caspase 3 and down-regulation of c-FLIP expression pp.02724391, 2017, https://doi.org/10.1002/ddr.21414
- Maritoclax Enhances TRAIL-Induced Apoptosis via CHOP-Mediated Upregulation of DR5 and miR-708-Mediated Downregulation of cFLIP vol.23, pp.11, 2018, https://doi.org/10.3390/molecules23113030
- HSP70 Acetylation Prevents Combined mTORC1/2 Inhibitor and Curcumin Treatment-Induced Apoptosis vol.23, pp.11, 2018, https://doi.org/10.3390/molecules23112755
- Cepharanthine Enhances TRAIL-Mediated Apoptosis Through STAMBPL1-Mediated Downregulation of Survivin Expression in Renal Carcinoma Cells vol.19, pp.10, 2018, https://doi.org/10.3390/ijms19103280
- Interferon-stimulated gene 15 enters posttranslational modifications of p53 pp.00219541, 2018, https://doi.org/10.1002/jcp.27347
- mTORC1/2 inhibitor and curcumin induce apoptosis through lysosomal membrane permeabilization-mediated autophagy vol.37, pp.38, 2018, https://doi.org/10.1038/s41388-018-0345-6
- Z-FL-COCHO, a cathepsin S inhibitor, enhances oxaliplatin-mediated apoptosis through the induction of endoplasmic reticulum stress vol.50, pp.8, 2018, https://doi.org/10.1038/s12276-018-0138-6
- Involvement of Up-Regulation of DR5 Expression and Down-Regulation of c-FLIP in Niclosamide-Mediated TRAIL Sensitization in Human Renal Carcinoma Caki Cells vol.23, pp.9, 2018, https://doi.org/10.3390/molecules23092264
- Garcinol Enhances TRAIL-Induced Apoptotic Cell Death through Up-Regulation of DR5 and Down-Regulation of c-FLIP Expression vol.23, pp.7, 2018, https://doi.org/10.3390/molecules23071614