References
- Abdulazim, Y., Minna, K. and Harald, K. (2008), "Effect of anisotropy and destructuration on behavior of Haarajoki test embankment", Int. J. Geomech., 9(4), 153-168. https://doi.org/10.1061/(ASCE)1532-3641(2009)9:4(153)
- Abdulazim, Y. (2009), Numerical analyses of embankments on PVD improved soft clays. Advances in Engineering Software, 4, 1047-1055.
- Burland, J.B. (1990), "On the compressibility and shear strength of natural clays", Geotechnique, 40(3), 329-378. https://doi.org/10.1680/geot.1990.40.3.329
- Burland, J.B., Rampello, S., Georgiannou, V.N. and Calabresi, G. (1996), "A laboratory study of the strength of four stiff clays", Geotechnique, 46(3), 491-514. https://doi.org/10.1680/geot.1996.46.3.491
- Chai, J.C., Miura, N. and Zhu, H.H. (2004), "Compression and consolidation characteristics of structured natural clays", Can. Geotech. J., 41(6), 1250-1258. https://doi.org/10.1139/t04-056
- Chen, B., Xu, Q. and Sun, D.A. (2014), "An elastoplastic model for structured clays", Geomech. Eng., Int. J., 7(2), 213-231. https://doi.org/10.12989/gae.2014.7.2.213
- Cheng, X.L. and Wang, J.H. (2016), "An elastoplastic bounding surface model for the cyclic undrained behaviour of saturated soft clays", Geomech. Eng., Int. J., 11(3), 325-343. https://doi.org/10.12989/gae.2016.11.3.325
- Cotecchia, F. and Chandler, R.J. (2000), "A general framework for the mechanical behavior of clays", Geotechnique, 50(4), 431-447. https://doi.org/10.1680/geot.2000.50.4.431
- Curtis, K., Jitendra, S., David, H. and James, G. (2009), "Finite element analysis of an embankment on a soft estuarine deposit using elastic-viscoplastic soil model", Can. Geotech. J., 46(3), 357-368. https://doi.org/10.1139/T08-129
- Dafalias, Y.F. (1986), "Bounding surface plasticity: Mathematical foundation and hypoplasticity", J. Eng. Mech., 112(9), 966-987. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:9(966)
- Dafalias, Y.F. (1987), "Anisotropic critical state clay plasticity model", Proceedings of the 2nd International Conference on Constitutive Laws for Engineering Materials, Volume 1, Tucson, AZ, USA, pp. 513-521.
- Gajo, A. and Wood, D.M. (2001), "A new approach to anisotropic, bounding surface plasticity: general formulation and simulations of natural and reconstituted clay behaviour", Int. J. Numer. Anal. Method. Geomech., 25(3), 207-241. https://doi.org/10.1002/nag.126
- Gens, A. and Nova, R. (1993), "Conceptual bases for a constitutive model for bonded soils and weak rocks", Proceedings of International Symposium on Hard Soils - Soft Rocks, Athens, Greece, September, pp. 485-494.
- Huang, M.S., Liu, Y.H. and Sheng, D.C. (2011), "Simulation of yielding and stress-strain behavior of Shanghai soft clay", Comput. Geotech., 38(3), 341-353. https://doi.org/10.1016/j.compgeo.2010.12.005
- Jirayut, S., Suksun, H. and Martin, D.L. (2010), "Modified structured cam clay: A generalised critical state model for destructured, naturally structured and artificially structured clays", Comput. Geotech., 37(7), 956-968. https://doi.org/10.1016/j.compgeo.2010.08.002
- John, P., Carter, J.P. and Martin, D. (2005), "Review of the structured cam clay model", In: Soil Constitutive Models: Evaluation, Selection, and Calibration, 128, 99-132.
- Karim, M.R., Manivannan, G., Gnanendran, C.T. and Lo, S.C.R. (2011), "Predicting the long-term performance of a geogrid-reinforced embankment on soft soil using two-dimensional finite element analysis", Can. Geotech. J., 48(5), 741-753. https://doi.org/10.1139/t10-104
- Karstunen, M. and Yin, Z.Y. (2010), "Modelling time-dependent behavior of Murro test embankment", Geotechnique, 60(10), 735-749. https://doi.org/10.1680/geot.8.P.027
- Karstunen, M., Krenn, H., Wheeler, S.J., Koskinen, M. and Zentar, R. (2005), "Effect of anisotropy and destructuration on the behavior of Murro test embankment", Int. J. Geomech., 5(2), 87-97. https://doi.org/10.1061/(ASCE)1532-3641(2005)5:2(87)
- Karstunen, M., Wiltafsky, C., Krenn, H., Scharinger, F. and Schweiger, H.F. (2006), "Modelling the behaviour of an embankment on soft clay with different constitutive models", Int. J. Numer. Anal. Method. Geomech., 30(10), 953-982. https://doi.org/10.1002/nag.507
- Kavvadas, M. and Amorosi, A. (2000), "A constitutive model for structured soils", Geotechnique, 50(3), 263-273. https://doi.org/10.1680/geot.2000.50.3.263
- Kimoto, S. and Oka, F. (2005), "An elasto-viscoplastic model for clay considering destructuralization and consolidation analysis of unstable behavior", Soils Found., 45(2), 29-42. https://doi.org/10.3208/sandf.45.2_29
- Koskinen, M., Karstunen, M. and Wheeler, S.J. (2002), "Modelling destructuration and anisotropy of a natural soft clay", Proceeding of the 5th European Conference on Numerical Methods in Geotechnical Engineering, Paris, France, September, pp. 11-20.
- Leroueil, S. and Vaughan, P.R. (1990), "The general and congruent effects of structure in natural soils and week rock", Geotechnique, 40(3), 467-488. https://doi.org/10.1680/geot.1990.40.3.467
- Leroueil, S., Tavenas, F. and Brucy, F. (1979), "Behavior of destructured natural clays", J. Geotech. Eng. Div., 105(6), 759-778.
- Liu, M.D. and Carter, J.P. (2000), "Modeling the destructuring of soils during virgin compression", Geotechnique, 50(4), 479-483. https://doi.org/10.1680/geot.2000.50.4.479
- Liu, M.D. and Carter, J.P. (2002), "A structured cam clay model", Can. Geotech. J., 39(6), 1313-1332. https://doi.org/10.1139/t02-069
- Locat, J. and Lefebvre, G. (1985), "The compressibility and sensitivity of an artificially sedimented clay soil: the Grande-Baleine marine clay", Marine Georesour. Geotech., 6(1), 1-27. https://doi.org/10.1080/10641198509388178
- Marcin, C. and Pieter, A.V. (2004), "On the modelling of anisotropy and destructuration of soft clays within the multi-laminate framework", Comput. Geotech., 31(1), 1-22. https://doi.org/10.1016/j.compgeo.2003.12.001
- Mestat, P.H. (2001), "MOMIS: une base de donnees sur la modelisation numerique des remblais sur sols compressibles et sur la confrontation calculs-mesures in situ", Bulletin des Laboratories des Ponts et Chaussees, 232, 43-58.
- Nakano, M., Nakai, K., Noda, T. and Asaoka, A. (2005), "Simulation of shear and one-dimensional compression behavior of naturally deposited clays by super/subloading yield surface Cam-clay model", Soils Found., 45(1), 141-151.
- Ng, C.W.W., Li, Q. and Liu, G.B. (2011), "Characteristics of one-dimensional compressibility of Shanghai clay", Chinese J. Geotech. Eng., 33(4), 630-636. [In Chinese]
- Paulo, J., Venda, O. and Luis, J.L. (2011), "Numerical predictions of the behaviour of soft clay with two anisotropic elastoplastic models", Comput. Geotech., 38(5), 598-611. https://doi.org/10.1016/j.compgeo.2011.04.006
- Pietruszczak, S. and Pande, G.N. (2001), "Description of soil anisotropy based on multi‐laminate framework", Int. J. Numer. Anal. Methods Geomech., 25(2), 197-206. https://doi.org/10.1002/nag.125
- Saiichi, S. and Takeshi, K. (1996), "Simplified deformation analysis for embankment foundation using elasto-plastic model", Soils Found., 36(2), 1-11. https://doi.org/10.3208/sandf.36.2_1
- Sheng, D., Sloan, S.W. and Yu, H.S. (2000), "Aspects of finite element implementation of critical state models", Computat. Mech., 26(2), 185-196. https://doi.org/10.1007/s004660000166
- Vincenzo, S. and Ghassan, A.S. (2009), "Analytical solution of stress-strain relationship of modified Cam clay in undrained shear", Geomech. Eng., Int. J., 1(4), 263-274. https://doi.org/10.12989/gae.2009.1.4.263
- Wheeler, S.J., Naatanen, A., Karstunen, M. and Lojander, M. (2003), "An anisotropic elastoplastic model for soft clay", Can. Geotech. J., 40(2), 403-418. https://doi.org/10.1139/t02-119
- Whittle, A.J. and Kavvadas, M.J. (1994), "Formulation of MIT-E3 constitutive model for overconsolidated clays", J. Geotech. Eng., 120(1), 173-198 https://doi.org/10.1061/(ASCE)0733-9410(1994)120:1(173)
- Yin, J. (2012), "Effect of soil structure on compression behavior of natural soft clays", Chinese J. Rock Soil Mech., 33(1), 48-52. [In Chinese]
- Yin, Z.Y., Chang, C.S., Karstunen, M.H. and Hicher, P.V. (2010), "An anisotropic elastic-viscoplastic model for soft clays", Int. J. Solids Struct., 47(5), 665-677. https://doi.org/10.1016/j.ijsolstr.2009.11.004
- Zdravkovic, L., Potts, D.M. and Hight, D.W. (2002), "The effect of strength anisotropy on the behavior of embankments on soft clay", Geotechnique, 52(6), 447-457. https://doi.org/10.1680/geot.2002.52.6.447
- Zhu, G.F. and Yin, J.H. (2000), "Elastic visco‐plastic consolidation modelling of clay foundation at Berthierville test embankment", Int. J. Numer. Anal. Method. Geomech., 24(5), 491-508. https://doi.org/10.1002/(SICI)1096-9853(20000425)24:5<491::AID-NAG78>3.0.CO;2-V