DOI QR코드

DOI QR Code

Application of a modified structural clay model considering anisotropy to embankment behavior

  • Zhang, Hao (Department of Civil Engineering, Shanghai Jiao Tong University) ;
  • Chen, Qiushi (Glenn Department of Civil Engineering, Clemson University) ;
  • Chen, Jinjian (Department of Civil Engineering, Shanghai Jiao Tong University) ;
  • Wang, Jianhua (Department of Civil Engineering, Shanghai Jiao Tong University)
  • Received : 2016.01.25
  • Accepted : 2017.02.16
  • Published : 2017.07.25

Abstract

Natural clays exhibit features such as structural and anisotropy. In this work, a constitutive model that is able to replicate these two salient features of natural clays is presented. The proposed model is based on the classical S-CLAY1 model, where the anisotropy of the soil is captured through the initial inclination and rotation of the yield surface. To account for the structural of the soil, the compression curve of the reconstituted soil is taken as the reference. All parameters of the proposed constitutive model have clear physical meanings and can be conveniently determined from conventional triaxial tests. This proposed model has been used to simulate the behavior of soft soil in the undrained triaxial tests and the performance of Murro embankment in terms of settlement and horizontal displacements during embankment construction and consolidation stage. Results of numerical simulations using proposed model have been compared with the field measurement data. The comparisons show that the two features significantly influence the prediction results.

Keywords

References

  1. Abdulazim, Y., Minna, K. and Harald, K. (2008), "Effect of anisotropy and destructuration on behavior of Haarajoki test embankment", Int. J. Geomech., 9(4), 153-168. https://doi.org/10.1061/(ASCE)1532-3641(2009)9:4(153)
  2. Abdulazim, Y. (2009), Numerical analyses of embankments on PVD improved soft clays. Advances in Engineering Software, 4, 1047-1055.
  3. Burland, J.B. (1990), "On the compressibility and shear strength of natural clays", Geotechnique, 40(3), 329-378. https://doi.org/10.1680/geot.1990.40.3.329
  4. Burland, J.B., Rampello, S., Georgiannou, V.N. and Calabresi, G. (1996), "A laboratory study of the strength of four stiff clays", Geotechnique, 46(3), 491-514. https://doi.org/10.1680/geot.1996.46.3.491
  5. Chai, J.C., Miura, N. and Zhu, H.H. (2004), "Compression and consolidation characteristics of structured natural clays", Can. Geotech. J., 41(6), 1250-1258. https://doi.org/10.1139/t04-056
  6. Chen, B., Xu, Q. and Sun, D.A. (2014), "An elastoplastic model for structured clays", Geomech. Eng., Int. J., 7(2), 213-231. https://doi.org/10.12989/gae.2014.7.2.213
  7. Cheng, X.L. and Wang, J.H. (2016), "An elastoplastic bounding surface model for the cyclic undrained behaviour of saturated soft clays", Geomech. Eng., Int. J., 11(3), 325-343. https://doi.org/10.12989/gae.2016.11.3.325
  8. Cotecchia, F. and Chandler, R.J. (2000), "A general framework for the mechanical behavior of clays", Geotechnique, 50(4), 431-447. https://doi.org/10.1680/geot.2000.50.4.431
  9. Curtis, K., Jitendra, S., David, H. and James, G. (2009), "Finite element analysis of an embankment on a soft estuarine deposit using elastic-viscoplastic soil model", Can. Geotech. J., 46(3), 357-368. https://doi.org/10.1139/T08-129
  10. Dafalias, Y.F. (1986), "Bounding surface plasticity: Mathematical foundation and hypoplasticity", J. Eng. Mech., 112(9), 966-987. https://doi.org/10.1061/(ASCE)0733-9399(1986)112:9(966)
  11. Dafalias, Y.F. (1987), "Anisotropic critical state clay plasticity model", Proceedings of the 2nd International Conference on Constitutive Laws for Engineering Materials, Volume 1, Tucson, AZ, USA, pp. 513-521.
  12. Gajo, A. and Wood, D.M. (2001), "A new approach to anisotropic, bounding surface plasticity: general formulation and simulations of natural and reconstituted clay behaviour", Int. J. Numer. Anal. Method. Geomech., 25(3), 207-241. https://doi.org/10.1002/nag.126
  13. Gens, A. and Nova, R. (1993), "Conceptual bases for a constitutive model for bonded soils and weak rocks", Proceedings of International Symposium on Hard Soils - Soft Rocks, Athens, Greece, September, pp. 485-494.
  14. Huang, M.S., Liu, Y.H. and Sheng, D.C. (2011), "Simulation of yielding and stress-strain behavior of Shanghai soft clay", Comput. Geotech., 38(3), 341-353. https://doi.org/10.1016/j.compgeo.2010.12.005
  15. Jirayut, S., Suksun, H. and Martin, D.L. (2010), "Modified structured cam clay: A generalised critical state model for destructured, naturally structured and artificially structured clays", Comput. Geotech., 37(7), 956-968. https://doi.org/10.1016/j.compgeo.2010.08.002
  16. John, P., Carter, J.P. and Martin, D. (2005), "Review of the structured cam clay model", In: Soil Constitutive Models: Evaluation, Selection, and Calibration, 128, 99-132.
  17. Karim, M.R., Manivannan, G., Gnanendran, C.T. and Lo, S.C.R. (2011), "Predicting the long-term performance of a geogrid-reinforced embankment on soft soil using two-dimensional finite element analysis", Can. Geotech. J., 48(5), 741-753. https://doi.org/10.1139/t10-104
  18. Karstunen, M. and Yin, Z.Y. (2010), "Modelling time-dependent behavior of Murro test embankment", Geotechnique, 60(10), 735-749. https://doi.org/10.1680/geot.8.P.027
  19. Karstunen, M., Krenn, H., Wheeler, S.J., Koskinen, M. and Zentar, R. (2005), "Effect of anisotropy and destructuration on the behavior of Murro test embankment", Int. J. Geomech., 5(2), 87-97. https://doi.org/10.1061/(ASCE)1532-3641(2005)5:2(87)
  20. Karstunen, M., Wiltafsky, C., Krenn, H., Scharinger, F. and Schweiger, H.F. (2006), "Modelling the behaviour of an embankment on soft clay with different constitutive models", Int. J. Numer. Anal. Method. Geomech., 30(10), 953-982. https://doi.org/10.1002/nag.507
  21. Kavvadas, M. and Amorosi, A. (2000), "A constitutive model for structured soils", Geotechnique, 50(3), 263-273. https://doi.org/10.1680/geot.2000.50.3.263
  22. Kimoto, S. and Oka, F. (2005), "An elasto-viscoplastic model for clay considering destructuralization and consolidation analysis of unstable behavior", Soils Found., 45(2), 29-42. https://doi.org/10.3208/sandf.45.2_29
  23. Koskinen, M., Karstunen, M. and Wheeler, S.J. (2002), "Modelling destructuration and anisotropy of a natural soft clay", Proceeding of the 5th European Conference on Numerical Methods in Geotechnical Engineering, Paris, France, September, pp. 11-20.
  24. Leroueil, S. and Vaughan, P.R. (1990), "The general and congruent effects of structure in natural soils and week rock", Geotechnique, 40(3), 467-488. https://doi.org/10.1680/geot.1990.40.3.467
  25. Leroueil, S., Tavenas, F. and Brucy, F. (1979), "Behavior of destructured natural clays", J. Geotech. Eng. Div., 105(6), 759-778.
  26. Liu, M.D. and Carter, J.P. (2000), "Modeling the destructuring of soils during virgin compression", Geotechnique, 50(4), 479-483. https://doi.org/10.1680/geot.2000.50.4.479
  27. Liu, M.D. and Carter, J.P. (2002), "A structured cam clay model", Can. Geotech. J., 39(6), 1313-1332. https://doi.org/10.1139/t02-069
  28. Locat, J. and Lefebvre, G. (1985), "The compressibility and sensitivity of an artificially sedimented clay soil: the Grande-Baleine marine clay", Marine Georesour. Geotech., 6(1), 1-27. https://doi.org/10.1080/10641198509388178
  29. Marcin, C. and Pieter, A.V. (2004), "On the modelling of anisotropy and destructuration of soft clays within the multi-laminate framework", Comput. Geotech., 31(1), 1-22. https://doi.org/10.1016/j.compgeo.2003.12.001
  30. Mestat, P.H. (2001), "MOMIS: une base de donnees sur la modelisation numerique des remblais sur sols compressibles et sur la confrontation calculs-mesures in situ", Bulletin des Laboratories des Ponts et Chaussees, 232, 43-58.
  31. Nakano, M., Nakai, K., Noda, T. and Asaoka, A. (2005), "Simulation of shear and one-dimensional compression behavior of naturally deposited clays by super/subloading yield surface Cam-clay model", Soils Found., 45(1), 141-151.
  32. Ng, C.W.W., Li, Q. and Liu, G.B. (2011), "Characteristics of one-dimensional compressibility of Shanghai clay", Chinese J. Geotech. Eng., 33(4), 630-636. [In Chinese]
  33. Paulo, J., Venda, O. and Luis, J.L. (2011), "Numerical predictions of the behaviour of soft clay with two anisotropic elastoplastic models", Comput. Geotech., 38(5), 598-611. https://doi.org/10.1016/j.compgeo.2011.04.006
  34. Pietruszczak, S. and Pande, G.N. (2001), "Description of soil anisotropy based on multi‐laminate framework", Int. J. Numer. Anal. Methods Geomech., 25(2), 197-206. https://doi.org/10.1002/nag.125
  35. Saiichi, S. and Takeshi, K. (1996), "Simplified deformation analysis for embankment foundation using elasto-plastic model", Soils Found., 36(2), 1-11. https://doi.org/10.3208/sandf.36.2_1
  36. Sheng, D., Sloan, S.W. and Yu, H.S. (2000), "Aspects of finite element implementation of critical state models", Computat. Mech., 26(2), 185-196. https://doi.org/10.1007/s004660000166
  37. Vincenzo, S. and Ghassan, A.S. (2009), "Analytical solution of stress-strain relationship of modified Cam clay in undrained shear", Geomech. Eng., Int. J., 1(4), 263-274. https://doi.org/10.12989/gae.2009.1.4.263
  38. Wheeler, S.J., Naatanen, A., Karstunen, M. and Lojander, M. (2003), "An anisotropic elastoplastic model for soft clay", Can. Geotech. J., 40(2), 403-418. https://doi.org/10.1139/t02-119
  39. Whittle, A.J. and Kavvadas, M.J. (1994), "Formulation of MIT-E3 constitutive model for overconsolidated clays", J. Geotech. Eng., 120(1), 173-198 https://doi.org/10.1061/(ASCE)0733-9410(1994)120:1(173)
  40. Yin, J. (2012), "Effect of soil structure on compression behavior of natural soft clays", Chinese J. Rock Soil Mech., 33(1), 48-52. [In Chinese]
  41. Yin, Z.Y., Chang, C.S., Karstunen, M.H. and Hicher, P.V. (2010), "An anisotropic elastic-viscoplastic model for soft clays", Int. J. Solids Struct., 47(5), 665-677. https://doi.org/10.1016/j.ijsolstr.2009.11.004
  42. Zdravkovic, L., Potts, D.M. and Hight, D.W. (2002), "The effect of strength anisotropy on the behavior of embankments on soft clay", Geotechnique, 52(6), 447-457. https://doi.org/10.1680/geot.2002.52.6.447
  43. Zhu, G.F. and Yin, J.H. (2000), "Elastic visco‐plastic consolidation modelling of clay foundation at Berthierville test embankment", Int. J. Numer. Anal. Method. Geomech., 24(5), 491-508. https://doi.org/10.1002/(SICI)1096-9853(20000425)24:5<491::AID-NAG78>3.0.CO;2-V