DOI QR코드

DOI QR Code

에피택셜 VO2 박막의 상전이에 대한 미시적 이해

Nanoscopic Understanding of Phase Transition of Epitaxial VO2 Thin Films

  • 김동욱 (이화여자대학교 물리학과) ;
  • 손아름 (성균관대학교 신소재공학부)
  • Kim, Dong-Wook (Department of Physics, Ewha Womans University) ;
  • Sohn, Ahrum (School of Advanced Materials Science & Engineering, Sungkyunkwan University)
  • 투고 : 2017.06.10
  • 심사 : 2017.06.27
  • 발행 : 2017.06.30

초록

We investigated configuration of metallic and insulating domains in $VO_2$ thin films, while spanning metal-insulator phase transition. Kelvin probe force microscopy, of which spatial resolution is less than 100 nm, enables us to measure local work function (WF) at the sample surface. The WF of $VO_2$ thin films decreased (increased) as increasing (decreasing) the sample temperature, during the phase transition. The higher and lower WF regions corresponded to the insulating and metallic domains, respectively. The metallic fraction, estimated from the WF maps, well explained the temperature-dependent resistivity based on the percolation model. The WF mapping also showed us how the structural defects affected the phase transition behaviors.

키워드

참고문헌

  1. M. M. Qazilbash, M. Brehm, B.-G. Chae, P.-C. Ho, G. O. Andreev, B.-J. Kim, S. J. Yun, A. V. Balatsky, M. B. Maple, F. Keilmann, H.-T. Kim, and D. N. Basov, Science 318 (2007) 1750-1753. https://doi.org/10.1126/science.1150124
  2. H. Ueda, T. Kanki, and H. Tanaka, Appl. Phys. Lett. 102 (2013) 153106. https://doi.org/10.1063/1.4802207
  3. J. Wei, Z. Wang, W. Chen, and D. H. Cobden, Nat. Nanotech. 4 (2009) 420-424. https://doi.org/10.1038/nnano.2009.141
  4. A. Sohn, H. Kim, D.-W. Kim, C. Ko, S. Ramanathan, J. Park, G. Seo, B.-J. Kim, J.-H. Shin, and H.-T. Kim, Appl. Phys. Lett. 101 (2012) 191605. https://doi.org/10.1063/1.4766292
  5. A. Sohn, T. Kanki, K. Sakai, H. Tanaka, and D.-W. Kim, Sci. Rep. 5 (2015) 10417. https://doi.org/10.1038/srep10417
  6. A. Sohn, T. Kanki, H. Tanaka, and D.-W. Kim, Appl. Phys. Lett. 107 (2015) 171603. https://doi.org/10.1063/1.4934943
  7. H. Kim, N. Y. Chan, J.-j. Dai, and D.-W. Kim, Sci. Rep. 5 (2015) 8531. https://doi.org/10.1038/srep08531
  8. Y. Cho et al. A. Sohn, S. Kim, M. G. Hahm, D. -H. Kim, B. Cho, and D.-W. Kim, ACS Appl. Mater. & Interfaces 8 (2016) 21612-21617. https://doi.org/10.1021/acsami.6b08104
  9. Y. J. Jang, E. Kim, S. Ahn, K. Chung, J. Kim, H. Kim, H. Wang, J. Lee, D.-W. Kim, and D. H. Kim, J. Phys. Chem. Lett. 8 (2017) 364-369. https://doi.org/10.1021/acs.jpclett.6b02511
  10. Y. Cho, B. Cho , Y. Kim, J. Lee, E. Kim, T. T. T. Nguyen, J. H. Lee, S. Yoon, D.-H. Kim, J.-h. Choi, and D.-W. Kim*, ACS Appl. Mater. & Interfaces 9 (2017) 6314-6319. https://doi.org/10.1021/acsami.6b15418
  11. H. Kim, S. Hong, and D.-W. Kim, Appl. Phys. Lett. 100 (2012) 022901. https://doi.org/10.1063/1.3675630
  12. T. Kanki, K. Kawatani, H. Takami, and H. Tanaka, Appl. Phys. Lett. 101 (2012) 243118. https://doi.org/10.1063/1.4772211
  13. K. Kawatani, H. Takami, T. Kanki, and H. Tanaka, Appl. Phys. Lett. 100 (2012) 173112. https://doi.org/10.1063/1.4709429
  14. B. S. Mun, K. Chen, J. Yoon, C. Dejoie, N. Tamura, M. Kunz, Z. Liu, M. E. Grass, S.-K. Mo, C. Park, Y. Y. Lee, and H. Ju, Phys. Rev. B 84 (2011) 113109. https://doi.org/10.1103/PhysRevB.84.113109
  15. A. Khodakov, B. Olthof, A. T. Bell, and E. Iglesia, J. Catal. 181 (1999) 205-216. https://doi.org/10.1006/jcat.1998.2295
  16. S. Lee, I. N. Ivanov, J. K. Keum, and H. N. Lee, Sci. Rep. 6 (2015) 19621.
  17. L. L. Fan, S. Chen, Z. L. Luo, Q. H. Liu, Y. F. Wu, L. Song, D. X. Ji, P. Wang, W. S. Chu, C. Gao, C. W. Zou, and Z. Y. Wu, Nano Lett. 14 (2014) 4026-4043.
  18. Y. J. Chang, J. S. Yang, Y. S. Kim, D. H. Kim, T. W. Noh, D.-W. Kim, E. Oh, B. Kahng, and J.-S. Chung, Phys. Rev. B 76 (2007) 075118. https://doi.org/10.1103/PhysRevB.76.075118