DOI QR코드

DOI QR Code

CLUSTERING OF EXTREMELY RED OBJECTS IN THE SUBARU GTO 2DEG2 FIELD

  • Shin, Jihey (Department of Astronomy and Atmospheric Sciences, Kyungpook National University) ;
  • Shim, Hyunjin (Department of Earth Science Education, Kyungpook National University) ;
  • Hwang, Ho Seong (Quantum Universe Center, Korea Institute for Advanced Study) ;
  • Ko, Jongwan (Korea Astronomy and Space Science Institute) ;
  • Lee, Jong Chul (Korea Astronomy and Space Science Institute) ;
  • Utsumi, Yousuke (Hiroshima Astrophysical Science Center, Hiroshima University) ;
  • Hwang, Narae (Korea Astronomy and Space Science Institute) ;
  • Park, Byeong-Gon (Korea Astronomy and Space Science Institute)
  • Received : 2017.03.23
  • Accepted : 2017.05.22
  • Published : 2017.06.30

Abstract

We study the angular correlation function of bright ($K_s{\leq}19.5$) Extremely Red Objects (EROs) selected in the Subaru GTO 2$deg^2$ field. By applying the color selection criteria of $R-K_s$ > 5.0, 5.5, and 6.0, we identify 9055, 4270, and 1777 EROs, respectively. The number density is consistent with similar studies on the optical - NIR color selected red galaxies. The angular correlation functions are derived for EROs with different limiting magnitude and different $R-K_s$ color cut. When we assume that the angular correlation function $w({\theta})$ follows a form of a power-law (i.e., $w({\theta})=A{\theta}^{-{\delta}}$), the value of the amplitude A was larger for brighter EROs compared to the fainter EROs. The result suggests that the brighter, thus more massive high-redshift galaxies, are clustered more strongly compared to the less massive galaxies. Assuming that EROs have redshift distribution centered at ~ 1.1 with ${\sigma}_z=0.15$, the spatial correlation length $r_0$ of the EROs estimated from the observed angular correlation function ranges ${\sim}6-10h^{-1}Mpc$. A comparison with the clustering of dark matter halos in numerical simulation suggests that the EROs are located in most massive dark matter halos and could be progenitors of $L_{\ast}$ elliptical galaxies.

Keywords

References

  1. Baugh, C. M., Gardner, J. P., Frenk, C. S., & Sharples, R. M. 1996, A Wide-Field K-Band Survey - II. Galaxy Clustering, MNRAS, 283, 15 https://doi.org/10.1093/mnras/283.1.L15
  2. Baugh, C. M., Benson, A. J., Cole, S., Frenk, C. S., & Lacey, C. G. 1999, Modelling the Evolution of Galaxy Clustering, MNRAS, 305, 21 https://doi.org/10.1046/j.1365-8711.1999.02590.x
  3. Bertin, E. 2010, SWarp: Resampling and Co-Adding FITS Images Together, Astrophysics Source Code Library, record ascl : 1010.068, 10068
  4. Bertin, E., & Arnouts, S. 1996, SExtractor : Software for Source Extraction, A&AS, 117, 393 https://doi.org/10.1051/aas:1996164
  5. Blanc, G. A., Lira, P., Barrientos, L. F., et al. 2008, The Multiwavelength Survey by Yale-Chile (MUSYC) : Wide K-Band Imaging, Photometric Catalogs, Clustering, and Physical Properties of Galaxies at z-2, ApJ, 681, 1099 https://doi.org/10.1086/588018
  6. Brown, M. J. I., Jannuzi, B. T., Dey, A., & Tiede, G. P. 2005, The Clustering of Extragalactic Extremely Red Objects, ApJ, 621, 41 https://doi.org/10.1086/427472
  7. Bruzual, G., & Charlot, S. 2003, Stellar Population Synthesis at the Resolution of 2003, MNRAS, 344, 1000 https://doi.org/10.1046/j.1365-8711.2003.06897.x
  8. Cassata, P., Cimatti, A., Kurk, J., et al. 2008, GMASS Ultradeep Spectroscopy of Galaxies at z-2. III. The Emergence of the Color Bimodality at z-2, A&A, 483, L39 https://doi.org/10.1051/0004-6361:200809881
  9. Cimatti, A., Daddi, E., Mignoli, M., et al. 2002, The K20 Survey. I. Disentangling Old and Dusty Star-Forming Galaxies in the ERO Population, A&A, 381, 68 https://doi.org/10.1051/0004-6361:20011696
  10. Coldwell, G., Alonso, S., Duplancic, F., et al. 2014, Confirmation of a Galaxy Cluster Hidden Behind the Galactic Bulge Using the VVV Survey, A&A, 569, 49 https://doi.org/10.1051/0004-6361/201423464
  11. Conselice, C. J., Newman, J. A., Georgakakis, A., et al. 2007, AEGIS: The Diversity of Bright Near-IR-Selected Distant Red Galaxies, ApJL, 660, L55 https://doi.org/10.1086/517921
  12. Conselice, C. J., Bundy, K., U, V., et al. 2008, The Faint and Extremely Red K-Band-Selected Galaxy Population in the DEEP2/Palomar Fields, MNRAS, 383, 1366 https://doi.org/10.1111/j.1365-2966.2007.12686.x
  13. Daddi, E., Cimatti, A., Pozzetti, L., et al. 2000, Detection of Strong Clustering of Extremely Red Objects : Implications for the Density of z > 1 Ellipticals, A&A, 361, 535
  14. Daddi, E., Broadhurst, T., Zamorani, G., et al. 2001, The Spatial Clustering of Distant, z -1, Early-Type Galaxies, A&A, 376, 825 https://doi.org/10.1051/0004-6361:20011029
  15. Daddi, E., Cimatti, A., Broadhurst, T., et al. 2002, The K20 Survey. II. The Different Spatial Clustering of z - 1 Old and Dusty Star-Forming EROs, A&A, 384, L1 https://doi.org/10.1051/0004-6361:20020112
  16. Dey, A., Graham, J. R., Ivison, R. J., et al. 1999, Observations of a z = 1.44 Dusty, Ultraluminous Galaxy and Implications for Deep Submillimeter Surveys, ApJ, 519, 610 https://doi.org/10.1086/307395
  17. Durkalec, A., Le Fvre, O., Pollo, A., et al. 2015, Evolution of Clustering Length, Large-Scale Bias, and Host Halo Mass at 2 < z < 5 in the VIMOS Ultra Deep Survey (VUDS)${\ast}$, A&A, 583, 128 https://doi.org/10.1051/0004-6361/201425343
  18. Furusawa, J., Sekiguchi, K., Takata, T., et al. 2011, The Mass-Dependent Clustering History of K-Selected Galaxies at z < 4 in the SXDS/UDS Field, ApJ, 727, 111 https://doi.org/10.1088/0004-637X/727/2/111
  19. Gonzalez-Perez, V., Baugh, C. M., Lacey, C. G., & Kim, J.-W. 2011, Massive, Red Galaxies in a Hierarchical Universe - II. Clustering of Extremely Red Objects, MNRAS, 417, 517 https://doi.org/10.1111/j.1365-2966.2011.19294.x
  20. Graham, J. R., & Dey, A. 1996, The Redshift of an Extremely Red Object and the Nature of the Very Red Galaxy Population, ApJ, 471, 517
  21. Grazian, A., Fontana, A., Moscardini, L., et al. 2006, The Clustering Evolution of Distant Red Galaxies in the GOODS-MUSIC Sample, A&A, 453, 507 https://doi.org/10.1051/0004-6361:20054793
  22. Groth, E. J., & Peebles, P. J. E. 1977, Statistical Analysis of Catalogs of Extragalactic Objects. VII - Two- and Three-Point Correlation Functions for the High-Resolution Shane-Wirtanen Catalog of Galaxies, ApJ, 217, 385 https://doi.org/10.1086/155588
  23. Ishikawa, S., Kashikawa, N., Toshikawa, J., & Onoue, M. 2015, The VeryWide-Field gzK Galaxy Survey - I. Details of the Clustering Properties of Star-Forming Galaxies at z - 2, MNRAS, 454, 205
  24. Jarvis, M. J., Bonfield, D. G., Bruce, V. A., et al. 2013, The VISTA Deep Extragalactic Observations (VIDEO) Survey, MNRAS, 428, 1281 https://doi.org/10.1093/mnras/sts118
  25. Kim, J.-W., Edge, A. C., Wake, D. A., & Stott, J. P. 2011, Clustering Properties of High-Redshift Red Galaxies in SA22 from the UKIDSS Deep eXtragalactic Survey, MNRAS, 410, 241 https://doi.org/10.1111/j.1365-2966.2010.17439.x
  26. Kim, J.-W., Edge, A. C., Wake, D. A., et al. 2014, Clustering of Extremely Red Objects in Elais-N1 from the UKIDSS DXS with Optical Photometry from Pan-STARRS 1 and Subaru, MNRAS, 438, 825 https://doi.org/10.1093/mnras/stt2245
  27. Kim, J.-W., Im, M., Lee, S.-K., et al. 2015, Linking Galaxies to Dark Matter Halos at z -1 : Dependence of Galaxy Clustering on Stellar Mass and Specific Star Formation Rate, ApJ, 806, 189 https://doi.org/10.1088/0004-637X/806/2/189
  28. Kong, X., Daddi, E., Arimoto, N., et al. 2006, A Wide Area Survey for High-Redshift Massive Galaxies. I. Number Counts and Clustering of BzKs and EROs, ApJ, 638, 72 https://doi.org/10.1086/498698
  29. Kurtz, M. J., & Geller, M. J., Utsumi, Y., et al. 2012, Testing Weak-Lensing Maps with Redshift Surveys: A Subaru Field, ApJ, 750, 168 https://doi.org/10.1088/0004-637X/750/2/168
  30. Landy, S. D., & Szalay, A. S. 1993, Bias and Variance of Angular Correlation Functions, ApJ, 412, 64 https://doi.org/10.1086/172900
  31. Limber, D. N. 1953, The Analysis of Counts of the Extragalactic Nebulae in Terms of a Fluctuating Density Field, ApJ, 117, 134 https://doi.org/10.1086/145672
  32. Mo, H. J., & White, S. D. M. 1996, An Analytic Model for the Spatial Clustering of Dark Matter Haloes, MNRAS, 282, 347 https://doi.org/10.1093/mnras/282.2.347
  33. Palamara, D. P., Brown, M. J. I., Jannuzi, B. T., et al. 2013, The Clustering of Extremely Red Objects, ApJ, 764, 31 https://doi.org/10.1088/0004-637X/764/1/31
  34. Peebles, P. J. E. 1980, The Large-Scale Structure of the Universe (Princeton: Princeton Univ. Press)
  35. Planck Collaboration, Ade, P. A. R., Aghanim, N., et al. 2016, Planck 2015 Results. XIII. Cosmological parameters, A&A, 594, 13 https://doi.org/10.1051/0004-6361/201525830
  36. Roche, N., Eales, S., Hippelein, H., & Willott, C. J. 1999, The Angular Correlation Function of K′ - 19.5 Galaxies and the Detection of a Cluster at z = 0.775, MNRAS, 306, 538 https://doi.org/10.1046/j.1365-8711.1999.02536.x
  37. Roche, N. D., Almaini, O., Dunlop, J., Ivison, R. J., & Willott, C. J. 2002, The Clustering, Number Counts and Morphology of Extremely Red (R-K > 5) Galaxies to $K{\geq}21$, MNRAS, 337, 1282 https://doi.org/10.1046/j.1365-8711.2002.05975.x
  38. Saracco, P., Longhetti, M., Severgnini, P., et al. 2005, The Density of Very Massive Evolved Galaxies to $z{\simeq}1.7$, MNRAS, 357, 40 https://doi.org/10.1111/j.1745-3933.2005.00014.x
  39. Simpson, C., Almaini, O., Cirasuolo, M., et al. 2006, Extremely Red Objects in the UKIDSS Ultra Deep Survey Early Data Release, MNRAS, 373, 21 https://doi.org/10.1111/j.1745-3933.2006.00235.x
  40. Spinrad, H., Dey, A., Stern, D., et al. 1997, LBDS 53W091: An Old, Red Galaxy at z = 1.552, ApJ, 484, 581 https://doi.org/10.1086/304381
  41. Utsumi, Y., Miyazaki, S., Geller, M. J., et al. 2014, Reducing Systematic Error in Weak Lensing Cluster Surveys, ApJ, 786, 93 https://doi.org/10.1088/0004-637X/786/2/93
  42. Valdes, F. G. 1998, The IRAF Mosaic Data Reduction Package, in ASP Conf. Ser. 145, Astronomical Data Analysis Software and Systems VII, ed. R. Albrecht, R. N. Hook, & H. A. Bushouse (San Francisco: ASP), 53
  43. Wake, D. A., Whitaker, K. E., Labbe, I., et al. 2011, Galaxy Clustering in the NEWFIRMMedium Band Survey: The Relationship Between Stellar Mass and Dark Matter Halo Mass at 1 < z < 2, ApJ, 728, 46 https://doi.org/10.1088/0004-637X/728/1/46
  44. Wilson, G., Huang, J.-S., Fazio, G. G., et al. 2007, AEGIS: A Panchromatic Study of IRAC-Selected Extremely Red Objects with Confirmed Spectroscopic Redshifts, ApJL, 660, L59 https://doi.org/10.1086/517923
  45. Zehavi, I., Zheng, Z., Weinberg, D. H., et al. 2011, Galaxy Clustering in the Completed SDSS Redshift Survey: The Dependence on Color and Luminosity, ApJ, 736, 59 https://doi.org/10.1088/0004-637X/736/1/59